scholarly journals Astragaloside IV Alleviates Cerebral Ischemia-Reperfusion Injury through NLRP3 Inflammasome-Mediated Pyroptosis Inhibition via Activating Nrf2

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lan Xiao ◽  
Ziwei Dai ◽  
Wenjing Tang ◽  
Canwen Liu ◽  
Biao Tang

As one of the fundamental components of Astragalus membranaceus, astragaloside IV (AST IV) exerts protective effects against cerebral ischemia-reperfusion injury (CIRI). Nevertheless, the underlying mechanisms have not yet been conclusively elucidated. To do so, here, we report on the regulatory effects of Nrf2 on NLRP3 inflammasome-mediated pyroptosis. CIRI was induced by middle cerebral artery occlusion-reperfusion (MCAO/R) in Sprague Dawley rats and modeled by oxygen and glucose deprivation/reoxygenation (OGD/R) in SH-SY5Y cells. Cerebral infarct volume and neurological deficit score served as indices to evaluate MCAO/R injury. In addition, the CCK-8 assay was used to assess cell viability, the LDH leakage rate was used as a quantitative index, and propidium iodide (PI) staining was used to visualize cells after OGD/R injury. The NLRP3/Caspase-1/GSDMD pathway, which produces the pores in the cell membrane that are central to the pyroptosis process, was assessed to investigate pyroptosis. Nrf2 activation was assessed by detecting Nrf2 protein levels and immunofluorescence analysis. We show that after MCAO/R of rats, the infarct volume and neurological deficit score of rats were strongly increased, and after OGD/R of cell cultures, cell viability was strongly decreased, and the LDH leakage rate and the proportion of PI-positive cells were strongly increased. In turn, MCAO/R and OGD/R enhanced the protein levels of NLRP3, Caspase-1, IL-1β, GSDMD, and GSDMD-N. Moreover, Nrf2 protein levels increased, and Nrf2 translocation was promoted after CIRI. Interestingly, AST IV (i) reduced the cerebral infarct volume and the neurological deficit score in vivo and (ii) increased the cell viability and reduced the LDH leakage rate and the proportion of PI-positive cells in vitro. AST IV reduced the protein levels of NLRP3, Caspase-1, IL-1β, GSDMD, and GSDMD-N, inhibiting NLRP3 inflammasome-mediated pyroptosis. AST IV also increased the protein levels of Nrf2 and promoted the transfer of Nrf2 to the nucleus, accelerating Nrf2 activation. Particularly revealing was that the Nrf2 inhibitor ML385 partly blocked the above effects of AST IV. Taken together, these results demonstrate that AST IV alleviates CIRI through inhibiting NLRP3 inflammasome-mediated pyroptosis via activating Nrf2.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
W Zuo ◽  
R Tian ◽  
Q Chen ◽  
L Wang ◽  
Q Gu ◽  
...  

Abstract Background Myocardial ischemia-reperfusion injury (MIRI) is one of the leading causes of human death. Nod-like receptor protein-3 (NLRP3) inflammasome signaling pathway involved in the pathogenesis of MIRI. However, the upstream regulating mechanisms of NLRP3 at molecular level remains unknown. Purpose This study investigated the role of microRNA330-5p (miR-330-5p) in NLRP3 inflammasome-mediated MIRI and the associated mechanism. Methods Mice underwent 45 min occlusion of the left anterior descending coronary artery followed by different times of reperfusion. Myocardial miR-330-5p expression was examined by quantitative polymerase chain reaction (PCR), and miR-330-5p antagomir and agomir were used to regulate miR-330-5p expression. To evaluate the role of miR-330-5p in MIRI, Evans Blue (EB)/2, 3, 5-triphenyltetrazolium chloride (TTC) staining, echocardiography, and immunoblotting were used to assess infarct volume, cardiac function, and NLRP3 inflammasome activation, respectively. Further, in vitro myocardial ischemia-reperfusion model was established in cardiomyocytes (H9C2 cell line). A luciferase binding assay was used to examine whether miR-330-5p directly bound to T-cell immunoglobulin domain and mucin domain-containing molecule-3 (TIM3). Finally, the role of miR-330-5p/TIM3 axis in regulating apoptosis and NLRP3 inflammasome formation were evaluated using flow cytometry assay and immunofluorescence staining. Results Compared to the model group, inhibiting miR-330-5p significantly aggravated MIRI resulting in increased infarct volume (58.09±6.39% vs. 37.82±8.86%, P<0.01) and more severe cardiac dysfunction (left ventricular ejection fraction [LVEF] 12.77%±6.07% vs. 27.44%±4.47%, P<0.01; left ventricular end-diastolic volume [LVEDV] 147.18±25.82 vs. 101.31±33.20, P<0.05; left ventricular end-systolic volume [LVESV] 129.11±30.17 vs. 74.29±28.54, P<0.05). Moreover, inhibiting miR-330-5p significantly increased the levels of NLRP3 inflammasome related proteins including caspase-1 (0.80±0.083 vs. 0.60±0.062, P<0.05), interleukin (IL)-1β (0.87±0.053 vs. 0.79±0.083, P<0.05), IL-18 (0.52±0.063 vs. 0.49±0.098, P<0.05) and tissue necrosis factor (TNF)-α (1.47±0.17 vs. 1.03±0.11, P<0.05). Furthermore, TIM3 was confirmed as a potential target of miR-330-5p. As predicted, suppression of TIM3 by small interfering RNA (siRNA) ameliorated the anti-miR-330-5p-mediated apoptosis of cardiomyocytes and activation of NLRP3 inflammasome signaling pathway (Figure 1). Conclusion Overall, our study indicated that miR-330-5p/TIM3 axis involved in the regulating mechanism of NLRP3 inflammasome-mediated myocardial ischemia-reperfusion injury. Figure 1 Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): National Natural Science Foundation of China Grants


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1838 ◽  
Author(s):  
Yi Zhang ◽  
Ying Zhang ◽  
Xiao-fei Jin ◽  
Xiao-hong Zhou ◽  
Xian-hui Dong ◽  
...  

Background: Ischemia/reperfusion (I/R) caused by ischemic stroke treatments leads to brain injury, and autophagy plays a role in the pathology. Astragaloside IV is a potential neuroprotectant, but its underlying mechanism on cerebral I/R injury needs to be explored. The objective of this study is to investigate the neuroprotective mechanism of Astragaloside IV against cerebral I/R injury. Methods: Middle cerebral artery occlusion method (MCAO) and oxygen and glucose deprivation/reoxygenation (OGD/R) method were used to simulate cerebral I/R injury in Sprague-Dawley (SD) rats and HT22 cells, respectively. The neurological score, 2,3,5-Triphe-nyltetrazolium chloride (TTC) staining, and transmission electron microscope were used to detect cerebral damage in SD rats. Cell viability and cytotoxicity assay were tested in vitro. Fluorescent staining and flow cytometry were applied to detect the level of apoptosis. Western blotting was conducted to examine the expression of proteins associated with autophagy. Results: This study found that Astragaloside IV could decrease the neurological score, reduce the infarct volume in the brain, and alleviate cerebral I/R injury in MCAO rats. Astragaloside IV promoted cell viability and balanced Bcl-2 and Bax expression in vitro, reduced the rate of apoptosis, decreased the expression of P62, and increased the expression of LC3II/LC3I in HT22 cells after OGD/R. Conclusions: These data suggested that Astragaloside IV plays a neuroprotective role by down-regulating apoptosis by promoting the degree of autophagy.


Author(s):  
Shizhen Zhao ◽  
Xiaotian Li ◽  
jie Wang ◽  
Honggang Wang

Autophagy is a stable self-sustaining process in eukaryotic cells. In this process, pathogens, abnormal proteins, and organelles are encapsulated by a bilayer membrane to form autophagosomes, which are then transferred to lysosomes for degradation. Autophagy is involved in many physiological and pathological processes. Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, containing NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and pro-caspase-1, can activate caspase-1 to induce pyroptosis and lead to the maturation and secretion of interleukin-1 β (IL-1 β) and IL-18. NLRP3 inflammasome is related to many diseases. In recent years, autophagy has been reported to play a vital role by regulating the NLRP3 inflammasome in inflammatory nervous system diseases. However, the related mechanisms are not completely clarified. In this review, we sum up recent research about the role of the effects of autophagy on NLRP3 inflammasome in Alzheimer’s disease, chronic cerebral hypoperfusion, Parkinson’s disease, depression, cerebral ischemia/reperfusion injury, early brain injury after subarachnoid hemorrhage, and experimental autoimmune encephalomyelitis and analyzed the related mechanism to provide theoretical reference for the future research of inflammatory neurological diseases.


2011 ◽  
Vol 39 (02) ◽  
pp. 325-333 ◽  
Author(s):  
Ling-Geng Yan ◽  
Yin Lu ◽  
Shi-Zhong Zheng ◽  
Ai-Yun Wang ◽  
Meng-Qiu Li ◽  
...  

The present study aimed to investigate the protective effects of injectable caltrop fruit saponin preparation (ICFSP) on ischemia-reperfusion injury in rat brain. Rats were injected with ICFSP and then subjected to cerebral ischemia-reperfusion injury induced by middle cerebral artery occlusion. Then the neurological deficit score was evaluated by Bederson's method. The infarct size was assessed by TTC staining. The content of malondialdehyde (MDA) and nitric oxide (NO), and the activity of superoxide dismutase (SOD) in rat cerebrum were measured with kits, and the content of 6 K prostaglandin F1α (6-K-PGF 1α), thromboxane B2 (TXB2) and endothelin (ET) in blood plasma was measured by radioimmunoassay. The results demonstrated that ICFSP led to a decrease in infarct size (p < 0.01), neurological deficit score (p < 0.05) and plasma content of TXB2 and ET (p < 0.05), and an increase of the plasma level of 6-K-PGF 1α (p < 0.05) and SOD activity in cerebrum, where the MDA and NO content were decreased. The treatment improved forelimb function. ICFSP showed a similar potency compared to that of Ligustrazine hydrochloride parenteral solution (LHPS) and nimodipine (Nim). We concluded that ICFSP protects the brain damage caused by ischemia-reperfusion injury in rats, and this may be closely related to the regulation of reactive oxygen species (MDA and SOD activity) and NO levels in the rat cerebrum, as well as vasoactive factors in the plasma (6-K-PGF 1α, TXB2 and ET).


2021 ◽  
Vol 22 (16) ◽  
pp. 8773
Author(s):  
Shuangyu Lv ◽  
Huiyang Liu ◽  
Honggang Wang

Ischemia/reperfusion (I/R) injury is characterized by a limited blood supply to organs, followed by the restoration of blood flow and reoxygenation. In addition to ischemia, blood flow recovery can also lead to very harmful injury, especially inflammatory injury. Autophagy refers to the transport of cellular materials to the lysosomes for degradation, leading to the conversion of cellular components and offering energy and macromolecular precursors. It can maintain the balance of synthesis, decomposition and reuse of the intracellular components, and participate in many physiological processes and diseases. Inflammasomes are a kind of protein complex. Under physiological and pathological conditions, as the cellular innate immune signal receptors, inflammasomes sense pathogens to trigger an inflammatory response. TheNLRP3 inflammasome is the most deeply studied inflammasome and is composed of NLRP3, the adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and pro-caspase-1. Its activation triggers the cleavage of pro-interleukin (IL)-1β and pro-IL-18 mediated by caspase-1 and promotes a further inflammatory process. Studies have shown that autophagy and the NLRP3 inflammasome play an important role in the process of I/R injury, but the relevant mechanisms have not been fully explained, especially how the interaction between autophagy and the NLRP3 inflammasome participates in I/R injury, which remains to be further studied. Therefore, we reviewed the recent studies about the interplay between autophagy and the NLRP3 inflammasome in I/R injury and analyzed the mechanisms to provide the theoretical references for further research in the future.


Author(s):  
Lei Wang ◽  
Ying Tan ◽  
Ziyu Zhu ◽  
Jun Chen ◽  
Qiang Sun ◽  
...  

We aim to explore the expression and function of long non-coding RNA (lncRNA) ATP2B1-AS1 in a cerebral ischemia/reperfusion (I/R) injury. In this study, we established a middle cerebral artery occlusion/reperfusion (MCAO/IR) rat model and an OGD/R PC12 cell model to evaluate the expression and role of ATP2B1-AS1 in the cerebral I/R injury. We found that the expression of ATP2B1-AS1 was upregulated in both in vitro and in vivo cerebral I/R injury models. Knockdown of ATP2B1-AS1 increased the cell viability, inhibited apoptosis, and decreased the expressions of inflammation cytokines. The target of ATP2B1-AS1 was predicted and validated to be miR-330-5p. MiR-330-5p abrogated the regulatory effect of ATP2B1-AS1 on cell viability, apoptosis, and cytokines of OGD/R PC12 cells. Furthermore, the results showed that miR-330-5p targeted TLR4, which was also upregulated in the infarcted area of MCAO/IR rats and OGD/R PC12 cells. Overexpression of ATP2B1-AS1 increased the expressions of TLR4, MyD88, and NF-κB p65 of OGD/R PC12 cells, while the effect of ATP2B1-AS1 was abrogated by miR-330-5p. In addition, knockdown of ATP2B1-AS1 decreased the latency time, increased the time of passing the platform position, reduced the cerebral infarct volume, decreased neurological deficit scores, and reduced the number of damaged neurons of MCAO/IR rats that were subjected to the Morris water maze test. Taken together, our study indicates that ATP2B1-AS1 may be an attractive therapeutic target for the treatment of cerebral ischemic injuries.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Chuanghong Lu ◽  
Chuanbin Chen ◽  
Ang Chen ◽  
Yunjiao Wu ◽  
Jianlin Wen ◽  
...  

Oridonin (ORI), the major pharmacological component extracted from a traditional Chinese medicine, possesses a beneficial effect on myocardial ischemia/reperfusion (I/R) injury. However, the underlying molecular mechanism by which ORI effects take place is not completely known. Thus, whether ORI works via downregulating oxidative stress and nod-like receptor protein-3 (NLRP3) inflammasome pathway was investigated in this study. Mice underwent surgery to induce myocardial I/R injury, and some were administered ORI (10 mg/kg/day) pretreatment, while others were not. The myocardial enzymes’ levels, infarct area, and inflammatory injury were measured. The activation situation of oxidative stress and NLRP3 inflammasome was also detected. We found that ORI pretreatment significantly alleviated CK-MB and cTnI levels and infarct size induced by I/R. ORI mitigated the inflammatory injury by decreasing the pathological damage and lowering TNF-α, IL-1β, and IL-18 levels. Moreover, the SOD1 and eNOS levels were significantly increased by ORI, while MDA and iNOS levels were relatively decreased. The oxidative stress was reversed using ORI pretreatment. Importantly, NLRP3 inflammasome pathway was also inhibited by ORI, as reflected by the lower protein levels of NLRP3, caspase-1, and IL-1β. In conclusion, ORI alleviates myocardial injury induced by I/R via inhibiting the oxidative stress and NLRP3 inflammasome pathway.


2020 ◽  
Vol 23 (3) ◽  
pp. 214-224 ◽  
Author(s):  
Esra Cakir ◽  
Ufuk Cakir ◽  
Cuneyt Tayman ◽  
Tugba Taskin Turkmenoglu ◽  
Ataman Gonel ◽  
...  

Background: Activated inflammation and oxidant stress during cerebral ischemia reperfusion injury (IRI) lead to brain damage. Astaxanthin (ASX) is a type of carotenoid with a strong antioxidant effect. Objective: The aim of this study was to investigate the role of ASX on brain IRI. Methods: A total of 42 adult male Sprague-Dawley rats were divided into 3 groups as control (n=14) group, IRI (n=14) group and IRI + ASX (n=14) group. Cerebral ischemia was instituted by occluding middle cerebral artery for 120 minutes and subsequently, reperfusion was performed for 48 hours. Oxidant parameter levels and protein degradation products were evaluated. Hippocampal and cortex cell apoptosis, neuronal cell count, neurological deficit score were evaluated. Results: In the IRI group, oxidant parameter levels and protein degradation products in the tissue were increased compared to control group. However, these values were significantly decreased in the IRI + ASX group (p<0.05). There was a significant decrease in hippocampal and cortex cell apoptosis and a significant increase in the number of neuronal cells in the IRI + ASX group compared to the IRI group alone (p<0.05). The neurological deficit score which was significantly lower in the IRI group compared to the control group was found to be significantly improved in the IRI + ASX group (p<0.05). Conclusion: Astaxanthin protects the brain from oxidative damage and reduces neuronal deficits due to IRI injury.


2020 ◽  
Vol 17 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Xiancan Wang ◽  
Yuqiang Shang ◽  
Shilin Dai ◽  
Wei Wu ◽  
Fan Yi ◽  
...  

Purpose: Myocardial infarction is a common cardiovascular disease. MicroRNA-16-5p (miR-16-5p) was upregulated in heart and kidney hypoxia/reoxygenation (H/R) injury. However, the role of miR-16-5p in myocardial infarction injury is still unclear. Methods: Human adult ventricular cardiomyocytes (AC16) were treated with ischemia/reperfusion (H/R). The miR-16-5p level was evaluated through real-time PCR. The activity of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) was detected via LDH and CK-MB monitoring kits. Cell viability was examined with 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetra-zolium bromide (MTT) assay. Western blotting was used to analyze the protein levels. The luci-ferase report assay confirmed the relative luciferase activity. Results: miR-16-5p was elevated in H/R-treated AC16 cells. miR-16-5p overexpression and knockdown were carried out. miR-16-5p knockdown repressed cell apoptosis, attenuated LDH and CK-MB activities, and enhanced cell viability in H/R-treated AC16 cells. Moreover, miR-16-5p knockdown promoted angiogenesis in human microvascular endothelial cells (HMVEC), causing elevation of vascular endothelial growth factor (VEGF), insulin receptor substrates 1 (IRS1), minichromosome maintenance complex component 2 (MCM2) and proliferating cell nuclear antigen (PCNA) protein levels. Moreover, miR-16-5p was testified to target IRS1. IRS1 silencing alleviated miR-16-5p knockdown-mediated inhibition of apoptosis in AC16 cells. Conclusion: miR-16-5p knockdown increased cell viability and angiogenesis, as well as inhibited cell apoptosis by increasing IRS1. These findings indicated that miR-16-5p knockdown may be a new therapeutic target for myocardial infarction.


Author(s):  
Xueying Tong ◽  
Jiajuan Chen ◽  
Wei Liu ◽  
Hui Liang ◽  
Hezhong Zhu

AbstractCardiovascular diseases rank the top cause of morbidity and mortality worldwide and are usually associated with blood reperfusion after myocardial ischemia/reperfusion injury (MIRI), which often causes severe pathological damages and cardiomyocyte apoptosis. LSINCT5 expression in the plasma of MI patients (n = 53), healthy controls (n = 42) and hypoxia-reoxygenation (HR)-treated cardiomyocyte AC16 cells was examined using qRT-PCR. The effects of LSINCT5 on cell viability and apoptosis were detected by MTT and flow cytometry, respectively. The expression of apoptosis-related proteins Bcl2, Bax and caspase 3 were tested by Western blot. The interaction between LSINCT5 and miR-222 was predicted by bioinformatic analysis. Moreover, changes in viability and apoptosis of AC16 cells co-transfected with siLSINCT5 and miR-222 inhibitor after HR treatment were examined. At last, the expression of proteins in PI3K/AKT pathway, namely PTEN, PI3K and AKT, was examined to analyze the possible pathway participating in LSINCT5-mediated MI/RI. Our study showed that LSINCT5 expression was upregulated in the plasma of MI patients and HR-treated AC16 cells. LSINCT5 overexpression significantly decreased cell viability and apoptosis. Luciferase reporter gene assay and RNA pulldown assay showed that LSINCT5 was a molecular sponge of miR-222. MiR-222 silencing in AC16 cells simulated the phenotypes of MIRI patients and HR-treated cells, indicating that LSINCT5 functions via miR-222 to regulate proliferation and apoptosis of HR-treated AC16 cells. We also showed that proteins of PI3K/AKT signaling pathway were affected in HR-treated AC16 cells, and LSINTC5 knockdown rescued these effects. LncRNA LSINCT5 was upregulated during MI pathogenesis, and LSINCT5 regulated MIRI possibly via a potential LSINCT5/miR-222 axis and PI3K/AKT signaling pathway. Our findings may provide novel evidence for MIRI prevention.


Sign in / Sign up

Export Citation Format

Share Document