scholarly journals Numerical Simulation of Dynamic Response of Submerged Floating Tunnel under Regular Wave Conditions

2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Wenlong Luo ◽  
Bo Huang ◽  
Yao Tang ◽  
Hao Ding ◽  
Ke Li ◽  
...  

A submerged floating tunnel (SFT) is considered an innovative alternative to conventional bridges and underground or immersed tunnels for passing through deep water. Assessment of hydrodynamic performance of SFT under regular wave loading is one of the important factors in the design of SFT structure. In this paper, a theoretical hydrodynamic model is developed to describe the coupled dynamic response of an SFT and mooring lines under regular waves. In this model, wave-induced hydrodynamic loads are estimated by the Morison equation for a moving object, and the simplified governing differential equation of the tunnel with mooring cables is solved using the fourth-order Runge–Kutta and Adams numerical method. The numerical results are successfully validated by direct comparison against published experimental data. On this basis, the effects of the parameters such as the cable length, buoyancy-weight ratio, wave period, wave steepness, and water/submergence depth on the dynamic response of the SFT under wave loading are studied. The results show that tunnel motions and cable tensions grow with wave height and period and decrease with submergence depth. The resonance of the tunnel will be triggered when the wave period is close to its natural vibration period, and the estimation formula of wave period corresponding to tunnel resonance is proposed in this paper.

Author(s):  
Woo Chul Chung ◽  
Chungkuk Jin ◽  
MooHyun Kim

Abstract Submerged floating tunnel (SFT) concept has been studied by many researchers as an alternative of conventional or floating bridges, especially in the fjord or as a connection between island and land. One of the major challenges is large dynamic responses under extreme wave and earthquake excitations. In this regard, two different types of SFT, which are mono and dual SFTs, are suggested in this study, and the global performance of them is compared through tunnel-mooring fully-coupled time-domain numerical simulations. The tunnel and mooring lines are modeled by the lumped-mass-based line model. The Morison equation is utilized for hydrodynamic load estimations of the tunnel and mooring lines at their instantaneous positions. To check dynamic response of SFT under operating condition, 10-yr waves with the current are considered as an environmental condition. Dynamic responses, mooring tensions, and inertial and drag forces are systematically compared.


Author(s):  
Sang-Ho Oh ◽  
Woo Sun Park

Assessment of hydrodynamic performance of submerged floating tunnel (SFT) under wave loading is one of important factor in the design of the structure. In this study, physical experiments were conducted in a two-dimensional wave flume to investigate hydrodynamic characteristics of a twin circular SFT model under the action of regular waves having different heights and periods. Five different configurations of the twin SFT model was tested in the experiment. The experimental results showed that the three-degree motions of the twin SFT and the associated tensile forces on the tension legs greatly vary with the configurations of the model. It was found that the CD0 configurations are most adequate for satisfactorily restricting the horizontal and vertical motions of the SFT model.


Author(s):  
Zhong-Tao Wang ◽  
Mao-Tian Luan ◽  
Shu-Jie Liu

The analysis of dynamic response of seabed due to wave loading is of practical significance in design and construction of marine structures and offshore installations. Recently considerable efforts for this problem have been made with growing interest by many researchers and marine engineers, and many representative results have been achieved. It is obvious that wave loading plays a significant role in the evaluation of construction safety and seabed instability. But there are few results of research and engineering design that can consider the feature of wave loading and soil parameters together. The purpose of this paper is to establish a reasonable numerical model to simulate dynamic response of seabed under random wave loading. The dynamic relation between random wave and seabed can also be described through this model. Comparative studies are principally made between the proposed analysis considering actual feature of ocean situation and conventional analysis based on linear theory of regular wave. The effect of randomness of wave loading on the dynamic response of seabed is investigated. The necessity is also discussed about considering the influence of damping energy on propagating wave by porous seabed. In the conventional analyses of seabed dynamics, wave loading is basically treated as a deterministic process and is usually taken into consideration by using linear theory of regular wave. In fact, ocean wave is of intrinsic randomness in both time sequences and spatial distribution. The random nature of both wave and wave-induced loading will subsequently affect dynamic behavior of seabed. In this paper, the analyses which can consider characteristics of randomness of wave loading and dynamic interaction between seabed and random waves, are formulated in a stochastic framework. Integrated numerical analysis model is established by employing wave spectrum of AVERAGE JONSWAP. The comparative studies are conducted among the methods of conventional random analysis, proposed random analysis, and linear regular wave theory. The results show that the amplitudes of dynamic response of seabed subjected to random wave loading are larger than that of regular linear wave loading. Therefore the stochastic feature of wave loading has to be duly taken into account in the analysis for dynamic response of seabed.


2014 ◽  
Vol 670-671 ◽  
pp. 801-804
Author(s):  
Wei Min Liu

Move performance in six-degree-of-freedom is one of the important indexes of hydro-dynamic property of tension leg platform (TLP). This paper discusses the time domain dynamic response characteristics of a tension leg platform in the regular wave. The paper focuses on the effects of the incident wave angles (15 °, 22.5 ° and 45 °), the wave height (6m, 8m and 10m) and the wave period (10s, 12s and 14s) on the movement of tension leg platform, the top tension of the tension leg. The results show that: because of the different sensitivity of the tension leg platform to the incident wave angle, the wave height and the wave period, the motion characteristics is different.


2021 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
Darshana T. Dassanayake ◽  
Alessandro Antonini ◽  
Athanasios Pappas ◽  
Alison Raby ◽  
James Mark William Brownjohn ◽  
...  

The survivability analysis of offshore rock lighthouses requires several assumptions of the pressure distribution due to the breaking wave loading (Raby et al. (2019), Antonini et al. (2019). Due to the peculiar bathymetries and topographies of rock pinnacles, there is no dedicated formula to properly quantify the loads induced by the breaking waves on offshore rock lighthouses. Wienke’s formula (Wienke and Oumeraci (2005) was used in this study to estimate the loads, even though it was not derived for breaking waves on offshore rock lighthouses, but rather for the breaking wave loading on offshore monopiles. However, a thorough sensitivity analysis of the effects of the assumed pressure distribution has never been performed. In this paper, by means of the Wolf Rock lighthouse distinct element model, we quantified the influence of the pressure distributions on the dynamic response of the lighthouse structure. Different pressure distributions were tested, while keeping the initial wave impact area and pressure integrated force unchanged, in order to quantify the effect of different pressure distribution patterns. The pressure distributions considered in this paper showed subtle differences in the overall dynamic structure responses; however, pressure distribution #3, based on published experimental data such as Tanimoto et al. (1986) and Zhou et al. (1991) gave the largest displacements. This scenario has a triangular pressure distribution with a peak at the centroid of the impact area, which then linearly decreases to zero at the top and bottom boundaries of the impact area. The azimuthal horizontal distribution was adopted from Wienke and Oumeraci’s work (2005). The main findings of this study will be of interest not only for the assessment of rock lighthouses but also for all the cylindrical structures built on rock pinnacles or rocky coastlines (with steep foreshore slopes) and exposed to harsh breaking wave loading.


2018 ◽  
Vol 8 (7) ◽  
pp. 1201 ◽  
Author(s):  
Haigang Ding ◽  
Jiyun Zhao ◽  
Gang Cheng ◽  
Steve Wright ◽  
Yufeng Yao

A new leaking valve-pump parallel control (LVPC) oil hydraulic system is proposed to improve the performance of dynamic response of present variable speed pump control (VSPC) system, which is an oil hydraulic control system with saving energy. In the LVPC, a control valve is operating at leaking status, together with a variable speed pump, to regulate the system flow of hydraulic oil simultaneously. Therefore, the degree of valve control and pump control can be adjusted by regulating the valve-pump weight ratio. The LVPC system design, mathematical model development, system parameter and control performance analysis are carried out systematically followed by an experimental for validation process. Results have shown that after introducing the valve control, the total leakage coefficient increases significantly over a wide range with the operating point and this further increases damping ratios and reduces the velocity stiffness. As the valve-pump weight ratio determines the flow distribution between the valve and the pump and the weight factors of the valve and/or the pump controls determines the response speed of the LVPC system, thus if the weight factors are constrained properly, the LVPC system will eventually have a large synthetic open-loop gain and it will respond faster than the VSPC system. The LVPC will enrich the control schemes of oil hydraulic system and has potential value in application requiring of fast response.


Author(s):  
Shuangxi Guo ◽  
Yilun Li ◽  
Min Li ◽  
Weimin Chen ◽  
Yiqin Fu

Recently, wind turbine has been developed from onshore area to offshore area because of more powerful available wind energy in ocean area and more distant and less harmful noise coming from turbine. As it is approaching toward deeper water depth, the dynamic response of the large floating wind turbine experiencing various environmental loads becomes more challenge. For examples, as the structural size gets larger, the dynamic interaction between the flexible bodies such as blades, tower and catenary mooring-lines become more profound, and the dynamic behaviors such as structural inertia and hydrodynamic force of the mooring-line get more obvious. In this paper, the dynamic response of a 5MW floating wind turbine undergoing different ocean waves is examined by our FEM approach in which the dynamic behaviors of the catenary mooring-line are involved and the integrated system including flexible multi-bodies such as blades, tower, spar platform and catenaries can be considered. Firstly, the nonlinear dynamic model of the integrated wind turbine is developed. Different from the traditional static restoring force, the dynamic restoring force is analyzed based on our 3d curved flexible beam approach where the structural curvature changes with its spatial position and the time in terms of vector equations. And, the modified finite element simulation is used to model a flexible and moving catenary of which the hydrodynamic load depending on the mooring-line’s motion is considered. Then, the nonlinear dynamic governing equations is numerically solved by using Newmark-Beta method. Based on our numerical simulations, the influences of the dynamic behaviors of the catenary mooring-line on its restoring performance are presented. The dynamic responses of the floating wind turbine, e.g. the displacement of the spar and top tower and the dynamic tension of the catenary, undergoing various ocean waves, are examined. The dynamic coupling between different spar motions, i.e. surge and pitch, are discussed too. Our numerical results show: the dynamic behaviors of mooring-line may significantly increase the top tension, particularly, the peak-trough tension gap of snap tension may be more than 9 times larger than the quasi-static result. When the wave frequency is much higher than the system, the dynamic effects of the mooring system will accelerate the decay of transient items of the dynamic response; when the wave frequency and the system frequency are close to each other, the displacement of the spar significantly reduces by around 26%. Under regular wave condition, the coupling between the surge and pitch motions are not obvious; but under extreme condition, pitch motion may get about 20% smaller than that without consideration of the coupling between the surge and pitch motions.


Sign in / Sign up

Export Citation Format

Share Document