scholarly journals Preparation of Drug Sustained-Release Scaffold with De-Epithelized Human Amniotic Epithelial Cells and Thiolated Chitosan Nanocarriers and Its Repair Effect on Spinal Cord Injury

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Lijuan Zhu ◽  
Shaohua Tian ◽  
Zhiyong Li ◽  
Dandan Fan ◽  
Hongwei Gao ◽  
...  

The disability rate of spinal cord injury (SCI) is extremely high, and stem cell inhibition is one of the most effective schemes in treating the spinal cord, but the survival rate is extremely low after stem cell transplantation, so it cannot be widely used in clinic. Studies have revealed that loading stem cells with biological scaffolds can effectively improve the survival rate and effect after stem cell transplantation. Therefore, this research was devised to analyze the repair effect of thiolated chitosan nanocarriers scaffold carrying de-epithelized human amniotic epithelial cells (HAECs) on SCI. And we used thiolated chitosan as nanocarriers, aiming to provide a reliable theoretical basis for future clinical practice. Through experiments, we concluded that the Tarlov and BBB scores of rats with SCI were raised under the intervention of thiolated chitosan carrying HAECs, while the inflammatory factors in serum, oxidative stress reaction in spinal cord tissue, apoptosis rate of nerve cells, and autophagy protein expression were all suppressed. Thus, the thiolated chitosan carrying HAECs may be applied to treat SCI by suppressing autophagy protein expression, oxidative stress response, and release of inflammatory factors in spinal cord tissue, which may be a new clinical therapy for SCI in the future. Even though we cannot understand exactly the therapeutic mechanism of thiolated chitosan carrying HAECs for SCI, the real clinical application of thiolated chitosan carrying HAECs needs to be confirmed by human experiments.

2021 ◽  
Vol 11 ◽  
Author(s):  
Hougang Xia ◽  
Dandan Wang ◽  
Xiaohui Guo ◽  
Kaidi Wu ◽  
Fuwei Huang ◽  
...  

Background: Spinal cord injury (SCI) is a devastating condition that leads to paralysis, disability and even death in severe cases. Inflammation, apoptosis and oxidative stress in neurons are key pathogenic processes in SCI. Catalpol (CTP), an iridoid glycoside extracted from Rehmannia glutinosa, has many pharmacological activities, such as anti-inflammatory, anti-oxidative and anti-apoptotic properties.Purpose: Here, we investigated whether CTP could exert neuroprotective effects against SCI, and explored the underlying mechanism involved.Methods: SCI was induced by a weight-drop device and treated with CTP (10 mg and 60 mg/kg). Then the locomotor function of SCI mice was evaluated by the BBB scores, spinal cord edema was measured by the wet/dry weight method, oxidative stress markers and inflammatory factors were detected by commercial kits and neuronal death was measured by TUNEL staining. Moreover, the microRNA expression profile in spinal cords from mice following SCI was analyzed using miRNA microarray. In addition, reactive oxygen species (ROS) generation, inflammatory response and cell apoptosis were detected in murine microglia BV2 cells under oxygen-glucose deprivation (OGD) and CTPtreatment.Results: Our data showed that CTP treatment could improve the functional recovery, as well as suppress the apoptosis, alleviate inflammatory and oxidative response in SCI mice. In addition, CTP was found to be up-regulated miR-142 and the protective effects of CTP on apoptosis, inflammatory and oxidative response may relate to its regulation of HMGB1/TLR4/NF-κB pathway through miR-142.Conclusion: Our findings suggest that CTP may protect the spinal cord from SCI by suppression of apoptosis, oxidative stress and inflammatory response via miR-142/HMGB1/TLR4/NF-κB pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Feng Sun ◽  
Haiwei Zhang ◽  
Tianwen Huang ◽  
Jianhui Shi ◽  
Tianli Wei ◽  
...  

Objectives. To investigate the roles of miR-221 in spinal cord injury (SCI) as well as the underlying mechanism. Methods. A mouse model of SCI was generated and used to examine dynamic changes in grip strength of the mouse upper and lower limbs. The expression of miR-221 and tumor necrosis factor-α (TNF-α) was detected by RT-qPCR and Western blot. Levels of inflammation and oxidative stress in microglia cells of the injured mice overexpressing miR-221 were then measured by ELISA. Bioinformatics analysis and dual-luciferase reporter assay were conducted to identify the miR-221 target. Results. We successfully constructed SCI mouse model. The results of qRT-PCR showed that miR-221 was gradually upregulated in the spinal cord tissue of mice in the SCI group with the prolonged injury time. At the same time, the mRNA and protein of TNF-α gradually decreased. We further confirmed through cell experiments that the inflammatory factors TNF-α and IL-6, as well as iNOS and eROS, were upregulated in spinal cord microglia cells of SCI mice, and upregulation of miR-122 can inhibit their expression. Finally, the luciferase reporter experiment confirmed that miR-122 targeted TNF-α. Conclusions. We present evidence that miR-221 promotes functional recovery of the injured spinal cord through targeting TNF-α, while alleviating inflammatory response and oxidative stress.


2021 ◽  
Vol 15 (5) ◽  
pp. 233-243
Author(s):  
Ercan Bal ◽  
Şahin Hanalioğlu ◽  
Aydın Sinan Apaydın ◽  
Ceylan Bal ◽  
Almila Şenat ◽  
...  

Abstract Background Neurological damage from spinal cord injury (SCI) is a result of primary mechanical injury and secondary damage from oxidative stress and neuroinflammation. Although genistein has been shown to have potent antioxidant and anti-inflammatory effects in studies of brain injury, its effect on secondary damage in SCI has remained unknown. Objective To determine effects of genistein in a model of SCI in rats. Methods We divided 21 rats evenly into 3 groups, a control group, in which only a laminectomy was performed; a trauma group in which SCI was induced; and a genistein group in which genistein was administered subcutaneously after SCI. The rats were assessed using a Basso–Beattie and Bresnahan functional score at the 12th hour and on the 1st, 3rd, 5th, and 7th days. Biochemical analyses were conducted at the same time points to determine the serum levels of catalase, ischemia-modified albumin (IMA), disulfide (SS), total thiol (TT), native thiol (NT), disulfide/total thiol (SS/TT), and native thiol/total thiol (NT/TT). Total oxidant and antioxidant capacity, and oxidative stress index were determined in spinal cord tissue obtained on the 7th day together with immunohistochemistry for cyclooxygenase-2 levels. Result Catalase activity on the 7th day was significantly (P = 0.001) higher in the genistein-treated rats than in other groups, and IMA levels became stable earlier (3rd day) in the genistein group. SS values were significantly (P = 0.004) lower in the genistein group. NT/TT ratio were significantly (P = 0.049) higher in the genistein-treated rats on the 7th day. Conclusion Genistein has antioxidant, anti-inflammatory, and protective effects in a model of SCI in rats and warrants further study.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lu Wang ◽  
Benson O. A. Botchway ◽  
Xuehong Liu

Spinal cord injury (SCI) often results in abnormal sensory and motor functions. Current interventions for SCI in the clinical setting are not effective partly due to the complexity concerning its pathophysiological mechanism. In the wake of SCI, considerable inflammatory cells assemble around the injured area that induces a series of inflammatory reactions and aggravates tissue lesions, thereby affecting the recovery of the damaged nerve tissue. Therefore, the inhibition of inflammatory responses can improve the repair of the injured spinal cord tissue. Safflower Yellow (SY) is the main active ingredient of Carthamus tinctorius. SY has anti-inflammatory effect, as it can inhibit IκBα phosphorylation to impede the NF-κB signaling pathway and p53 nuclear translocation. Besides, SY can limit the release of pro-inflammatory factors, which in turn may alleviate secondary SCI and prevent further complications. In this report, we analyze the pathophysiological mechanism of SCI, the role of inflammatory responses, and how SY interferes with the HMGB1-TLR-4-NF-κB signaling pathway to attenuate inflammatory responses in SCI.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Camilo Rios ◽  
Iván Santander ◽  
Marisela Méndez-Armenta ◽  
Concepción Nava-Ruiz ◽  
Sandra Orozco-Suárez ◽  
...  

After spinal cord injury (SCI), some self-destructive mechanisms start leading to irreversible neurological deficits. It is known that oxidative stress and apoptosis play a major role in increasing damage after SCI. Metallothioneins I and II (MT) are endogenous peptides with known antioxidant, neuroprotective capacities. Taking advantage of those capacities, we administered exogenous MT to rats after SCI in order to evaluate the protective effects of MT on the production of reactive oxygen species (ROS) and lipid peroxidation (LP), as markers of oxidative stress. The activities of caspases-9 and -3 and the number of annexin V and TUNEL-positive cells in the spinal cord tissue were also measured as markers of apoptosis. Rats were subjected to either sham surgery or SCI and received vehicle or two doses of MT (10 μg per rat) at 2 and 8 h after surgical procedure. The results showed a significant increase in levels of MT protein by effect of SCI and SCI plus treatment at 12 h, while at 24 h an increase of MT was observed only in the injury plus treatment group (p<0.05). ROS production was decreased by effect of MT in lesioned tissue; likewise, we observed diminished LP levels by MT effect both in the sham group and in the group with SCI. Also, the results showed an increase in the activity of caspase-9 due to SCI, without changes by effect of MT, as compared to the sham group. Caspase-3 activity was increased by SCI, and again, MT treatment reduced this effect only at 24 h after injury. Finally, the results of the number of cells positive to annexin V and TUNEL showed a reduction due to MT treatment both at 24 and 72 h after the injury. With the findings of this work, we conclude that exogenously administered MT has antioxidant and antiapoptotic effects after SCI.


2020 ◽  
Vol 15 (4) ◽  
pp. 321-331 ◽  
Author(s):  
Zhe Gong ◽  
Kaishun Xia ◽  
Ankai Xu ◽  
Chao Yu ◽  
Chenggui Wang ◽  
...  

Spinal Cord Injury (SCI) causes irreversible functional loss of the affected population. The incidence of SCI keeps increasing, resulting in huge burden on the society. The pathogenesis of SCI involves neuron death and exotic reaction, which could impede neuron regeneration. In clinic, the limited regenerative capacity of endogenous cells after SCI is a major problem. Recent studies have demonstrated that a variety of stem cells such as induced Pluripotent Stem Cells (iPSCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cells (MSCs) and Neural Progenitor Cells (NPCs) /Neural Stem Cells (NSCs) have therapeutic potential for SCI. However, the efficacy and safety of these stem cellbased therapy for SCI remain controversial. In this review, we introduce the pathogenesis of SCI, summarize the current status of the application of these stem cells in SCI repair, and discuss possible mechanisms responsible for functional recovery of SCI after stem cell transplantation. Finally, we highlight several areas for further exploitation of stem cells as a promising regenerative therapy of SCI.


2021 ◽  
pp. 096032712110033
Author(s):  
Liying Fan ◽  
Jun Dong ◽  
Xijing He ◽  
Chun Zhang ◽  
Ting Zhang

Spinal cord injury (SCI) is one of the most common destructive injuries, which may lead to permanent neurological dysfunction. Currently, transplantation of bone marrow mesenchymal stem cells (BMSCs) in experimental models of SCI shows promise as effective therapies. BMSCs secrete various factors that can regulate the microenvironment, which is called paracrine effect. Among these paracrine substances, exosomes are considered to be the most valuable therapeutic factors. Our study found that BMSCs-derived exosomes therapy attenuated cell apoptosis and inflammation response in the injured spinal cord tissues. In in vitro studies, BMSCs-derived exosomes significantly inhibited lipopolysaccharide (LPS)-induced PC12 cell apoptosis, reduced the secretion of pro-inflammatory factors including tumor necrosis factor (TNF)-α and IL (interleukin)-1β and promoted the secretion of anti-inflammatory factors including IL-10 and IL-4. Moreover, we found that LPS-induced protein expression of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and nuclear transcription factor-κB (NF-κB) was significantly downregulated after treatment with BMSCs-derived exosomes. In in vivo studies, we found that hindlimb motor function was significantly improved in SCI rats with systemic administration of BMSCs-derived exosomes. We also observed that the expression of pro-apoptotic proteins and pro-inflammatory factors was significantly decreased, while the expression of anti-apoptotic proteins and anti-inflammatory factors were upregulated in SCI rats after exosome treatment. In conclusion, BMSCs-derived exosomes can inhibit apoptosis and inflammation response induced by injury and promote motor function recovery by inhibiting the TLR4/MyD88/NF-κB signaling pathway, which suggests that BMSCs-derived exosomes are expected to become a new therapeutic strategy for SCI.


2021 ◽  
Author(s):  
Yixia Yin ◽  
Wenwu Wang ◽  
Qi Shao ◽  
Binbin Li ◽  
Dan Yu ◽  
...  

A IKVAV-functionalized hydrogel is developed. It not only enhances neural stem cell (NSC) attachment, growth, and differentiation, but also maintains the proliferation ability of the NSC spheroids in the hydrogel for spinal cord injury repair.


Sign in / Sign up

Export Citation Format

Share Document