scholarly journals Expression and Secretion of CXCL-8 and CXCL-10 FromMycobacterium BovisBCG-Infected Human Epithelial Cells: Role of IL-4

2006 ◽  
Vol 2006 ◽  
pp. 1-6 ◽  
Author(s):  
Patricia Méndez-Samperio ◽  
Elena Miranda ◽  
Abraham Vázquez

CXC chemokine release can be modulated by Th2-derived cytokines. Interleukin(IL)-4 is one of the cytokines that are the hallmark of the Th-2 response, and plays an important role in human tuberculosis. In the current study, we investigated the effect of IL-4 on chemokine production by human epithelial cells infected withMycobacterium bovisbacillus calmette-guérin (BCG). Gene expression of CXCL-8 and CXCL-10 was determined by the reverse transcription (RT)-polymerase chain reaction method. The levels of immunoreactive CXCL-8 and CXCL-10 were determined by enzyme-linked immunosorbent assay. We found that, althoughM. bovisBCG induced gene expression of CXCL-8 and CXCL-10 inM. bovisBCG-infected human epithelial cells, CXCL-8 mRNA level was significantly reduced by IL-4, whereas no significant effect of IL-4 was observed on CXCL10 mRNA level. In addition, IL-4 decreased CXCL-8 (in a graded and significant manner) but not CXCL-10 secretion. These results were further confirmed, since a significant reversion was obtained with a neutralizing antibody to human IL-4, whereas an isotype-matched control antibody had no significant effect on CXCL-8 secretion. Furthermore, we found a similar effect of IL-4 onM. bovisBCG-induced CXCL-8 and CXCL-10 secretion by using other human epithelial A549 cell line. Collectively, these data demonstrate thatM. bovisBCG-infected human epithelial cells can have an active role in a local inflammatory immune response via the secretion of CXC chemokines which can be selectively regulated by Th2-derived cytokines.

Author(s):  
Tatsuro Saruga ◽  
Tadaatsu Imaizumi ◽  
Shogo Kawaguchi ◽  
Kazuhiko Seya ◽  
Tomoh Matsumiya ◽  
...  

AbstractC-X-C motif chemokine 10 (CXCL10) is an inflammatory chemokine and a key molecule in the pathogenesis of rheumatoid arthritis (RA). Melanoma differentiation-associated gene 5 (MDA5) is an RNA helicase that plays a role in innate immune and inflammatory reactions. The details of the regulatory mechanisms of CXCL10 production and the precise role of MDA5 in RA synovitis have not been fully elucidated. The aim of this study was to examine the role of MDA5 in regulating CXCL10 expression in cultured human rheumatoid fibroblast-like synoviocytes (RFLS). RFLS was stimulated with Toll-like receptor 3 (TLR3) ligand polyinosinic:polycytidylic acid (poly I:C), a synthetic double-stranded RNA mimetic. Expression of interferon beta (IFN-β), MDA5, and CXCL10 was measured by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, and enzyme-linked immunosorbent assay. A neutralizing antibody of IFN-β and siRNA-mediated MDA5 knockdown were used to determine the role of these molecules in regulating CXCL10 expression downstream of TLR3 signaling in RFLS. Poly I:C induced IFN-β, MDA5, and CXCL10 expression in a concentration- and time-dependent manner. IFN-β neutralizing antibody suppressed the expression of MDA5 and CXCL10, and knockdown of MDA5 decreased a part of CXCL10 expression (p < 0.001). The TLR3/IFN-β/CXCL10 axis may play a crucial role in the inflammatory responses in RA synovium, and MDA5 may be partially involved in this axis.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Philipp Boder ◽  
Sheon Mary ◽  
Lesley Graham ◽  
Christian Delles

Abstract Background and Aims Uromodulin (UMOD) is the most abundantly secreted protein found within the urine, primarily produced by medullary thick ascending limb (mTAL) epithelial cells of the kidneys. There is accruing genetic evidence implicating UMOD in blood pressure regulation and consequently hypertension. The molecular signaling induced by calcium in the kidney and its influence on blood pressure are not well understood. The aim of this study was to investigate the potential role of extracellular calcium and the calcium-sensing receptor (CaSR) in mTAL on UMOD production and secretion in TAL cells with the hope of defining novel clinical targets for the treatment of hypertension. Method Kidneys were harvested from normotensive Wistar-Kyoto (WKY) and stroke-prone spontaneously hypertensive (SHRSP) female rats. To determine the effect of extracellular calcium on UMOD secretion, mTAL tubules were incubated in media with and without 1mM calcium, nifedipine (10µM), NPS2143 (1 or 5 µM) and spermine (2mM). Extracellular and intracellular UMOD protein levels were detected by Western blot. Gene expression of Umod was determined by qRT-PCR. Results Calcium increased mTAL tubule UMOD secretion in WKY and SHRSP. Nifedipine slightly decreased UMOD secretion in WKY without calcium. In both strains, NPS2143 increased calcium-induced UMOD secretion, with an enhanced effect in SHRSP. Stimulation of CaSR with spermine decreased UMOD secretion in WKY. Analysis of intracellular UMOD levels in these conditions demonstrated increased accumulation when extracellular secretion was low, and vice versa. Incubation of primary mTAL cells with calcium confirmed increased localisation of UMOD at the membrane compared to the cytosol, without any major differences in cell morphology. The Umod mRNA level changes were not statistically significant among conditions. Conclusion Trafficking of UMOD in the mTAL is influenced by the type of CaSR ligand and the biased nature of G-protein coupled CaSR signalling. Unravelling the signalling events post-calcium will be necessary for identification of key regulators of UMOD secretion and provide new sites for therapeutic intervention in hypertension.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 777 ◽  
Author(s):  
Scavo ◽  
Depalo ◽  
Rizzi ◽  
Ingrosso ◽  
Fanizza ◽  
...  

Extracellular vesicles (EVs) are involved in intercellular communication during carcinogenesis, and cancer cells are able to secrete EVs, in particular exosomes containing molecules, that can be transferred to recipient cells to induce pathological processes and significant modifications, as metastasis, increase of proliferation, and carcinogenesis evolution. FZD proteins, a family of receptors comprised in the Wnt signaling pathway, play an important role in carcinogenesis of the gastroenteric tract. Here, a still unknown role of Frizzled 10 (FZD10) protein was identified. In particular, the presence of FZD10 and FZD10-mRNA in exosomes extracted from culture medium of the untreated colorectal, gastric, hepatic, and cholangio cancer cell lines, was detected. A substantial reduction in the FZD10 and FZD10-mRNA level was achieved in FZD10-mRNA silenced cells and in their corresponding exosomes. Concomitantly, a significant decrease in viability of the silenced cells compared to their respective controls was observed. Notably, the incubation of silenced cells with the exosomes extracted from culture medium of the same untreated cells promoted the restoration of the cell viability and, also, of the FZD10 and FZD10-mRNA level, thus indicating that the FZD10 and FZD10-mRNA delivering exosomes may be potential messengers of cancer reactivation and play an active role in long-distance metastatization.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 567
Author(s):  
Wenyu Si ◽  
Hailing Li ◽  
Tiezhu Kang ◽  
Jing Ye ◽  
Zhiqiu Yao ◽  
...  

This study explored the role of γ-aminobutyric acid transaminase (GABA-T) in the puberty and reproductive performance of female rats. Immunofluorescence technique, quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the distribution of GABA-T and the expression of genes and hormones in female rats, respectively. The results showed that GABA-T was mainly distributed in the arcuate nucleus (ARC), paraventricular nucleus (PVN) and periventricular nucleus (PeN) of the hypothalamus, and in the adenohypophysis, ovarian granulosa cells and oocytes. Abat mRNA level at 28 d was lowest in the hypothalamus and the pituitary; at puberty, it was lowest in the ovary. Abat mRNA level was highest in adults in the hypothalamus; at infancy and puberty, it was highest in the pituitary; and at 21 d it was highest in the ovary. After vigabatrin (GABA-T irreversible inhibitor) was added to hypothalamus cells, the levels of Abat mRNA and Rfrp-3 mRNA were significantly reduced, but Gnrh mRNA increased at the dose of 25 and 50 μg/mL; Kiss1 mRNA was significantly increased but Gabbr1 mRNA was reduced at the 50 μg/mL dose. In prepubertal rats injected with vigabatrin, puberty onset was delayed. Abat mRNA, Kiss1 mRNA and Gnrh mRNA levels were significantly reduced, but Rfrp-3 mRNA level increased in the hypothalamus. Vigabatrin reduced the concentrations of GABA-T, luteinizing hormone (LH) and progesterone (P4), and the ovarian index. Lactation performance was reduced in adult rats with vigabatrin treatment. Four hours after vigabatrin injection, the concentrations of GABA-T and LH were significantly reduced in adult and 25 d rats, but follicle-stimulating hormone (FSH) increased in 25 d rats. In conclusion, GABA-T affects the reproductive function of female rats by regulating the levels of Gnrh, Kiss1 and Rfrp-3 in the hypothalamus as well as the concentrations of LH and P4.


2016 ◽  
Vol 28 (4) ◽  
pp. 221-231 ◽  
Author(s):  
Kinga Bobińska ◽  
Janusz Szemraj ◽  
Piotr Gałecki ◽  
Monika Talarowska

ObjectiveAmong the 28 metalloproteinases described so far, 23 can be found in the human organism, but only few are expressed in the human brain. The main objective of this study was to analyse the relationship between MMP-2, MMP-9 and TIMP-2 gene expression and cognitive performance.MethodsThe study comprised 234 subjects: patients suffering from recurrent depressive disorder (rDD, n=139) and healthy subjects (HS, n=95). The cognitive function assessment was carried out with the help of the following tests: Trail Making Test, The Stroop Test, Verbal Fluency Test and Auditory Verbal Learning Test. Gene expression on the mRNA and protein level was evaluated for MMP-2, MMP-9 and TIMP-2 in both groups using RNA extraction, reverse transcription and enzyme-linked immunosorbent assay.ResultsBoth mRNA and protein expression levels of all the genes were significantly lower in rDD subjects as compared with HS. Having analysed the entire experimental group (N=234), significant interrelations were found between the expression of the analysed genes and the results of the tests used to measure cognitive functions. Increased expression on both the mRNA and the protein level was associated in each case with better performance of all the tests conducted. After carrying out a separate analysis on the people from the rDD group and the HS group, similar dependencies were still observed.ConclusionsThe results of our study show decreased expression of MMP-2, MMP-9 and TIMP-2 genes on both mRNA and protein levels in depression. Elevated expression of MMP-2, MMP-9, TIMP-2 positively affects cognitive efficiency: working memory, executive functions, attention functions, direct and delayed auditory–verbal memory, the effectiveness of learning processes and verbal fluency. The study highlights the important role of peripheral matrix metalloproteinases genes in depression and cognitive functions.


PLoS ONE ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. e0172707 ◽  
Author(s):  
Sanny Moussette ◽  
Abeer Al Tuwaijri ◽  
Hamid-Reza Kohan-Ghadr ◽  
Samar Elzein ◽  
Raquel Farias ◽  
...  

1997 ◽  
Vol 323 (2) ◽  
pp. 521-524 ◽  
Author(s):  
Jean-Eric BRANKA ◽  
Geneviève VALLETTE ◽  
Anne JARRY ◽  
Christian L. LABOISSE

The aim of this work was to investigate the role of nitric oxide (NO) on the macromolecular exocytotic function of human epithelial cells. We tested the effects of two NO-generating drugs, i.e. 1-hexanamine 6-(2-hydroxy-1-methyl-2-nitrosohydrazine)-N-methyl (MAHMA NONOate) and sodium nitroprusside (SNP), on mucin exocytosis from the human colonic epithelial HT29-Cl.16E cell line. Our results show that MAHMA NONOate and SNP elicited a rapid mucin exocytotic response through a cGMP-dependent and a cGMP-independent pathway respectively. Indeed, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ), a newly available specific inhibitor of soluble guanylate cyclase, inhibited both cGMP accumulation and subsequent mucin exocytosis evoked by MAHMA NONOate. By contrast, SNP did not alter intracellular cGMP levels, and SNP-mediated mucin exocytosis was not inhibited by ODQ. As expected from two NO donors acting through distinct pathways, the combined action of MAHMA NONOate and SNP led to an additive effect on mucin exocytosis. SNP was likely to act through S-nitrosylation of a cellular target, because cysteine, a reductive thiol that provides decoy targets for SNP through the formation of nitrosocysteine, abolished the early stimulatory effect of SNP on mucin exocytosis. Finally, the fact that in the presence of cysteine SNP was able to trigger a late, ODQ-inhibitable, mucin exocytotic response demonstrates the ability of NO to shift its intracellular signalling pathway depending on the changes of the redox state of the milieu.


2009 ◽  
Vol 27 (1) ◽  
pp. 111-119 ◽  
Author(s):  
Sung-Hwa Sohn ◽  
Jaebum Lee ◽  
Ki-Nam Kim ◽  
In kyoung Kim ◽  
Meyoung-Kon Kim

Sign in / Sign up

Export Citation Format

Share Document