Abstract 3904: Rspondin-1 contributes to tumor cell proliferation via Wnt signaling pathway

Author(s):  
So Hyun Park ◽  
Sol Kim ◽  
Min Yeong Choi ◽  
Jiwoon Park ◽  
Shinae Kang ◽  
...  
QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Rowaida Mohammed Reda M. M Aboushahba ◽  
Fayda Ibrahim Abdel Motaleb ◽  
Ahmed Abdel Aziz Abou-Zeid ◽  
Enas Samir Nabil ◽  
Dalia Abdel-Wahab Mohamed ◽  
...  

ABSTRACT Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths world-wide. There is an increasing need for the identification of novel biomarkers/targets for early diagnosis and for the development of novel chemopreventive and therapeutic agents for CRC. Recently, MACF1 gene has emerged as a potential therapeutic target in cancer as it involved in processes critical for tumor cell proliferation, invasion and metastasis. It is suggested that MACF1 may function in cancers through Wnt signaling. MiR-34a is a well-known tumor suppressor miRNA.miR-34a targets MACF1 gene as a part of the wnt signaling pathway. In this study, 40 colonic tissues were collected from CRC patients (20) and control subjects (20). miR-34a-5p was assessed by real time PCR in all study groups. The results showed highly significant decrease (P < 0.01) in miR-34a relative expression in the CRC group (median RQ 0.13) when compared to the benign group (median RQ 5.3) and the healthy control group (median RQ 19.63). miR-34a mimic and inhibitor were transfected in CaCo-2 cell line and proliferation was assessed. The transfection of the cell line with miR-34a mimic decreased cell proliferation. Our study suggests that miR-34a-5p targets MACF1 gene as a part of the wnt signaling pathway leading to the involvement in the molecular mechanisms of CRC development and progression.


2000 ◽  
Vol 14 (14) ◽  
pp. 1741-1749 ◽  
Author(s):  
Ken-ichi Tago ◽  
Tsutomu Nakamura ◽  
Michiru Nishita ◽  
Junko Hyodo ◽  
Shin-ichi Nagai ◽  
...  

Wnt signaling has an important role in both embryonic development and tumorigenesis. β-Catenin, a key component of the Wnt signaling pathway, interacts with the TCF/LEF family of transcription factors and activates transcription of Wnt target genes. Here, we identify a novel β-catenin-interacting protein, ICAT, that was found to inhibit the interaction of β-catenin with TCF-4 and represses β-catenin–TCF-4-mediated transactivation. Furthermore, ICAT inhibited Xenopus axis formation by interfering with Wnt signaling. These results suggest that ICAT negatively regulates Wnt signaling via inhibition of the interaction between β-catenin and TCF and is integral in development and cell proliferation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1423-1423
Author(s):  
You Hua Yu ◽  
Na Guo ◽  
Yujing Gong ◽  
Baidong Liu ◽  
Hong Liu ◽  
...  

Abstract Abstract 1423 Patients with B cell malignaces initially respond to current treatment modalities, however, such malignances remain incurable. Many new therapeutic options have become available during the past several years but nearly all patients develop resistance to currently available therapeutic options. Ideally, a new treatment should inhibit tumor growth, improve the efficacy of other anti-tumor agents, and improve both the overal survial and the quality of life for patients. Pterostilbene is predominantly found in Rhubarb. We synthesized bipterostilbene (5-(4-(4-(3,5-dihydroxylstyryl)phenoxy)styryl)-benzene-1,3-diol) (C28H22O5) of a molecular weight of 438.48 Kda. In this study, we first examined whether bipterostilbene affects tumor cells proliferation using breast cancer, ovarian cancer, lymphoma and multiple myeloma (MM) cell lines. The results of the MTS assay demonstrated that bipterostilbene significantly inhibited tumor cell proliferation of the lymphoma cell line (Raji) and the MM cell lines (RPMI1640 and MM1s) at 48 hours (IC50: 5μM for Raji, 4μM for RPMI8226, and 2 μM for MM1s). The induction of tumor cell apoptosis was most prominent at 72 hours. The extent of the inhibition of tumor cell proliferation and the induction of apoptosis was concentration-dependent. Bipterostilbene had minimal effects on breast and ovarian cancer cell lines. Noteworthy, bipterostilbene had no detectable cytotoxic effects on normal human peripheral blood mononuclear cells (PBMCs). The molecular mechanism by which bipterostilbene mediates its effects was examined. Both the AKT and the NF-κB signaling transduction pathways have been reported to play key roles in B cell metabolism, proliferation and survival. Using RT-PCR, bipterostilbene specifically inhibited AKT1 and mTOR gene expression when Raji or RPMI8226 tumor cells were treated with the IC50 concentration of bipterostilbene for 24 hours. Analysis of downstream gene products of the AKT pathway revealed that Cyclin D1 expression was slightly reduced and P21Cip and P27 kip expressions were not changed. Bipterostilbene did not alter AKT2 or AKT3 gene expression, demonstrating that this compound is specifically targeting AKT1. We further determined whether bipterostilbene interfered with IGF1-induced AKT/mTOR activation or IL-1β –mediated NF-κB phosphorylation by Western blot. The results showed that bipterostilbene markedly inhibited IGF1-induced phosphorylation of AKT but did not interfere with IL-1β-induced NF-κB activity and IκB phosphorylation. Overall, the results of our in vitro studies demonstrate that bipterostilbene inhibits tumor cell proliferation and enhances apoptosis of B-cell malignancies via inhibition of the AKT/mTOR signaling pathway with no detectable effect on the NF-κB signaling pathway. Importantly, bipterostilbene is not cytotoxic on normal hematopoietic cells at concentrations that were highly toxic to B-cell malignancies. We propose that bipterostilbene may be better tolerated than other anti- cancer drugs that are currently being used for the treatment of B-cell malignancies. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document