Multidrug-Resistant Escherichia coli Strains Isolated from Patients Are Associated with Class 1 and 2 Integrons

Chemotherapy ◽  
2015 ◽  
Vol 61 (2) ◽  
pp. 72-76 ◽  
Author(s):  
Hamid Lavakhamseh ◽  
Parviz Mohajeri ◽  
Samaneh Rouhi ◽  
Pegah Shakib ◽  
Rashid Ramazanzadeh ◽  
...  

Background:Escherichia coli isolates displaying multidrug-resistance (MDR) are a major health care problem that results in mortality and morbidity. Integrons are DNA elements in E.coli that are related to antibiotic resistance. The aim of this study was to determine class 1 and 2 integrons and MDR in E. coli isolates obtained from patients in two Sanandaj hospitals, located in Iran. Materials and Methods: 120 isolates of E. coli were obtained from clinical specimens (from November 2013 to April 2014), and the susceptibility of E. coli antimicrobial agents was determined using the Kirby-Bauer disk diffusion method according to the CLSI. PCR were applied for detection of class 1 and 2 integrons in E. coli isolates. SPSS software v16 and the χ2 test were used for statistical analysis in order to calculate the association between antibiotic resistance and the presence of integrons (p < 0.05). Results: In a total of 120 E. coli isolates, 42.5% had MDR. Integrons were found in 50.9% of the MDR isolates, and included 47.05% class 1 and 3.92% class 2 integrons. The strains did not have both classes of integrons simultaneously. An association between resistance to antibiotics and integrons was found. Conclusion: Our results showed that int1 and int2 genes present in E. coli isolates obtained from patients cause MDR in this isolates. Since such bacteria are a reservoir for the transmission of MDR bacteria, appropriate programs are necessary to reduce this problem.

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 447
Author(s):  
Barbara Kot ◽  
Agata Grużewska ◽  
Piotr Szweda ◽  
Jolanta Wicha ◽  
Urszula Parulska

The aim of this study was to determine antibiotic resistance patterns and the prevalence of uropathogenes causing urinary tract infections (UTIs) in patients hospitalized in January–June 2020 in central Poland. Antimicrobial susceptibility testing was performed using the disk-diffusion method. Escherichia coli (52.2%), Klebsiella pneumoniae (13.7%), Enterococcus faecalis (9.3%), E. faecium (6.2%), and Proteus mirabilis (4,3%) were most commonly isolated from urine samples. E. coli was significantly more frequent in women (58.6%) (p = 0.0089) and in the age group 0–18, while K. pneumoniae was more frequent in men (24.4%) (p = 0.0119) and in individuals aged 40–60 and >60. Gram-negative species showed resistance to ampicillin. K. pneumoniae were resistant to amoxicillin plus clavulanic acid (75.0%), piperacillin plus tazobactam (76.2%), cefotaxime (76.2%), cefuroxime (81.0%), ciprofloxacin (81.0%), and trimethoprim plus sulphamethoxazole (81.0%). Carbapenems were effective against all E. coli and P. mirabilis. Some K. pneumoniae (13.6%) produced metallo-β-lactamases (MBLs). E. coli (22.6%), K. pneumoniae (81.8%), and all E. faecium were multidrug-resistant (MDR). Some E. coli (26.2%), K. pneumoniae (63.6%), and P. mirabilis (14.3%) isolates produced extended-spectrum beta-lactamases (ESBL). Vancomycin-resistant E. faecium was also found. This study showed that the possibilities of UTIs therapy using available antibiotics become limited due to the increasing number of antibiotic-resistant uropathogens.


2015 ◽  
Vol 9 (05) ◽  
pp. 496-504 ◽  
Author(s):  
Divya Sukumaran ◽  
Abdulla A Mohamed Hatha

Introduction: Escherichia coli strains can cause a variety of intestinal and extraintestinal diseases. Extraintestinal pathogenic E. coli (ExPEC) strains have the ability to cause severe extraintestinal infections. Multidrug resistance among ExPEC could complicate human infections. Methodology: Escherichia coli strains were isolated during the period of January 2010 to December 2012 from five different stations set at Cochin estuary. Susceptibility testing was determined by the disk-diffusion method using nine different antimicrobial agents. A total of 155 strains of Escherichia coli were screened for the presence of virulence factor genes including papAH, papC, sfa/focDE, iutA,and kpsMT II associated with ExPEC. Results: Among the 155 E. coli isolates, 26 (16.77%), carried two or more virulence genes typical of ExPEC. Furthermore, 19.23% of the ExPEC isolates with multidrug resistance were identified to belong to phylogenetic groups B2 and D. Statistically significant association of iutA gene in ExPEC was found with papC (p < 0.001) and kpsMT II (p < 0.001) genes. ExPEC isolates were mainly resistant to ampicillin (23.07%), tetracycline (19.23%), co-trimoxazole (15.38%), and cefotaxime (15.38%). The adhesion genes papAH and sfa/focDE were positively associated with resistance to gentamicin, chloramphenicol, and cefotaxime (p < 0.05). Conclusions: Co-occurrence of virulence factor genes with antibiotic resistance among ExPEC poses considerable threat to those who use this aquatic system for a living and for recreation.


2017 ◽  
Vol 9 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Haddadi Azam ◽  
Somayeh Mikaili Ghezeljeh ◽  
Shavandi Mahmoud

Abstract Background Multidrug resistance is a serious problem in the treatment of urinary tract infections. Horizontal gene transfer, directed by strong selective pressure of antibiotics, has resulted in the widespread distribution of multiple antibiotic resistance genes. The dissemination of resistance genes is enhanced when they are trapped in integrons. Objectives To determine the prevalence of integrons among multidrug resistant Escherichia coli strains collected from regional hospitals and private clinical laboratories in Alborz province. Methods The susceptibility of 111 clinical Escherichia coli isolates was tested using a Kirby–Bauer disk diffusion method for common antibiotics. Isolates were screened for the production of extended spectrum β-lactamases (ESBLs) using a double disk synergy test. The existence of integrons was confirmed by amplification of the integrase gene and their class determined via analysis of PCR products by PCR-RFLP. Results Isolates showed the highest resistance to amoxicillin. Nitrofurantoin, amikacin, and ceftizoxime were the most effective antibiotics in vitro. Eighty-eight isolates of 111 (79%) were resistant to more than three unrelated drugs. We found 30% of the multidrug resistant isolates harbor integrons. Class 1 and 2 integrons were detected in 25 and 1 isolates, respectively. ESBL screening of strains showed 45 isolates (40%) were positive; 22% of the ESBL-positive isolates carried class 1 integrons and the frequency of MDR in ESBLpositive isolates was 93%. Conclusion The existence of integrons in only 29.5% of multidrug resistant isolates showed that besides integrons, antibiotic resistance genes were probably carried on other transferable elements lacking integrons, such as transposons or plasmids.


Author(s):  
Nasrin Bahmani ◽  
Noshin Abdolmaleki ◽  
Afshin Bahmani

Background and Objectives: Urinary tract infection (UTI) is one of the most frequent infectious diseases which is caused by Gram-negative bacteria especially Escherichia coli. Multiple resistance to antimicrobial agents are increasing quickly in E. coli isolates and may complicate therapeutic strategies for UTI. The propose of this study was to determine the antibiotic resistance patterns and the multidrug-resistance (MDR) phenotypes in uropathogenic E. coli (UPEC). Materials and Methods: A total of 153 UPEC isolates were collected from both hospitalized patients (95 isolates) and outpatients (58 isolates) from March to October 2018. In order to determine the MDR among UPEC isolates, we have tested 15 antimicrobial agents on Muller Hinton agar by the disk diffusion method. Results: The percentage of MDR isolates (resistant to at least three drug classes such as fluoroquinolones, penicillins and cephalosporins) was 55.5% in the hospitalized patients and the outpatients. Antibiotic resistance to ampicillin, ceftazidime, nalidixic acid and trimethoprim/ sulfamethoxazole was higher than 60%. Meropenem, Imipenem and norfloxacin indicated markedly greater activity (93.3%, 80% and 85.6%, respectively) than other antimicrobial agents. Conclusions: Urinary tract infection due to MDR E. coli may be difficult to treat empirically due to high resistance to commonly used antibiotics, so, empirical antibiotic treatment should be reviewed periodically at local studies.


2020 ◽  
Vol 18 ◽  
Author(s):  
Elhassan Benyagoub ◽  
Miaad K. Alkhudhairy ◽  
S. Mohamed Benchaib ◽  
Abdelmadjid Zaalan ◽  
Youcef Mekhfi ◽  
...  

Background: Emergence of multidrug-resistant uropathogenic strains mainly the global spread of extended-spectrum betalactamase (ESBL) genes accompanied both by uncontrolled use of antibacterial agents and a considerable decrease in their activities makes the monitoring of the resistance pattern one of necessary means that could help the medical practitioners to choose the best treatment. For this purpose and during four months from March 1 to June 30 (2019), an experimental study has been carried out on urine specimens of 123 inpatients (IP) and outpatients (OP) at infectious disease service Boudjemaa TOURABI Public Hospital of Bechar (Algeria), aiming the detection of ESBL-producing Enterobacteriaceae uropathogenic strains. Methods: Firstly, the antibiotic susceptibility testing has been carried out by using the disk diffusion method to determine not only the multidrug resistance patterns, but also the multiple antibiotic resistance indexes of uropathogenic strains isolated from clinical IP and OP samples. Secondly, the ESBL detection was done by using the following methods: synergy tests based on the synergy between a thirdgeneration cephalosporin and clavulanate, double-disc synergy test (DDST) and phenotypic tests on a cloxacillin-containing agar. Results: As a result, 56 patients had a urinary tract infection (UTI) in overall 123 patients; a frequency of 45,52%. Through a UTI’s frequency of 64,7%, the female gender was the most affected. All age groups were affected by UTI, with a mean age of 38,47±19,97 years old. Knowing that UTIs’ patients having ages ranged from 16 to 49 years old were most affected compared to other ages’ groups, with a frequency of 66,6 and 50% for female and male gender, respectively. The microbial strains represented by the bacteria group were predominant, ie (98,22%) followed by yeasts (1,78%), where Gram-negative bacilli showed (96,36%) of the uropathogenic agents, so (3,64%) were Gram-positive bacteria. The antibiotic resistance profile of isolated Enterobacteriaceae showed very high resistance rates for the species of Escherichia coli, Klebsiella spp, and Proteus spp to aminopenicillins, cephalosporins, and less against carbapenems and other drug groups. E. coli had presented the highest multidrug resistance followed by Klebsiella spp with a MAR index ranged from 0,53 to 0,82. Within this range, a total of 28 isolate (25 E. coli, 2 Klebsiella spp, and 1 Proteus mirabilis) had shown resistance against 9 to 14 out of the 17 tested antibiotics. The rate of ESBL-producing Enterobacteriaceae strains was 23,07 and 55,26% for inpatients and outpatients respectively, where E.coli was the most important ESBL producers out of all isolated strains. Conclusion: An alarming ESBLs rate for outpatients which is usually higher among inpatients with UTI, who receive several classes of antibiotics. Such condition should be considered as a major public health concern, and measures must be taken to establish the sources and drivers of this issue. Thus, the findings of this research pushes health sector stakeholders as well as scientific communities to act on reducing the transmission of the multidrug-resistant strains that threatens several classes of life-saving antibiotics.


2017 ◽  
Vol 80 (11) ◽  
pp. 1877-1881 ◽  
Author(s):  
Leila Ben Said ◽  
Mouna Hamdaoui ◽  
Ahlem Jouini ◽  
Abdellatif Boudabous ◽  
Karim Ben Slama ◽  
...  

ABSTRACT The purpose of this study was to determine the carriage rate of Escherichia coli isolates in seafood, to analyze the phenotype and genotype of antimicrobial resistance in the recovered isolates, and to characterize extended-spectrum β-lactamase (ESBL) E. coli producers. E. coli isolates were recovered from 24 (34.3%) of the 70 seafood samples analyzed, and one isolate per sample was further characterized. Antibiotic resistance was determined by the disk diffusion method in the 24 isolates, with the following results (number of resistant isolates): tetracycline (8), streptomycin (7), ampicillin (6), trimethoprim-sulfamethoxazole (4), chloramphenicol (4), ciprofloxacin (3), cefotaxime (2), and ceftazidime (2). Six isolates showed a multiresistant phenotype (including at least three families of antibiotics). Among tetracycline-resistant E. coli isolates, tet(A) was detected in five isolates and tet(B) in two isolates. The qnr(A) or aac(6′)-1b-cr genes were detected in two ciprofloxacin-resistant E. coli isolates, and the sul2 gene in two trimethoprim-sulfamethoxazole–resistant isolates. ESBL-containing E. coli isolates, carrying the blaCTX-M-1 gene, were detected in 2 of the 70 seafood samples, obtained from gilt-head bream aquaculture. The ESBL isolates were typed phylogenetically and by multilocus sequence typing, and they were ascribed to lineage ST48/A and to the new ST3497/B1; these isolates carried the fimA, aer, and papGIII virulence genes. One of the ESBL-producing E. coli isolates carried an unusual class 1 integron (with the array dfr32-ereA-aadA1). Seafood could be a source of multiresistant E. coli isolates for the aquatic environment, and these could enter the food chain.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Mina Yekani ◽  
Mohammad Yousef Memar ◽  
Hossein Bannazadeh Baghi ◽  
Fatemeh Yeganeh Sefidan ◽  
Naser Alizadeh ◽  
...  

The aims of this study were to investigate the antibiotics susceptibility, multidrug- resistant (MDR) frequency and the association of integrons with MDR among phylogenic groups of uropathogenic E. coli (UPEC). In total, 176 non-duplicated UPEC isolates were collected from urinary tract infections (UTIs) specimens. The disk diffusion method was performed for determination of antibiotic susceptibility patterns. Phylogenetic grouping and the presence of integron-associated genes (int) were detected by the PCR technique. A high frequency of resistance was observed to cotrimoxazole (96.9%), ampicillin (85%), trimethoprim (80.1%) and cefazolin (79.6%); and 140 isolates (79.5%) were MDR. Carbapenems and fosfomycin were the most effective antibiotics. The majority of isolates (60.8%) belonged to the phylogenic group B2. Integrons were detected in 135 (76.7%) of isolates and, class I was the most common (63.6%) class. MDR isolates were found to be significantly associated with class І integrons. These isolates were found to be closely associated with the phylogenic group D (82%), however, the presence of class І integrons was higher among MDR isolates of the phylogroup B1. This pattern is believed to be due to other mechanisms such as the overexpression of the efflux pumps. Our findings show a significant correlation between MDR and the presence of class І integron. We conclude that class 1 integron plays an important role in the development of MDR UPEC, especially among the phylogroup B1.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1431
Author(s):  
Annamária Kincses ◽  
Bálint Rácz ◽  
Zain Baaity ◽  
Orsolya Vásárhelyi ◽  
Erzsébet Kristóf ◽  
...  

Urinary tract infections (UTIs) are common bacterial infections caused mainly by enteric bacteria. Numerous virulence factors assist bacteria in the colonization of the bladder. Bacterial efflux pumps also contribute to bacterial communication and to biofilm formation. In this study, the phenotypic and genetic antibiotic resistance of clinical UTI pathogens such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were determined by disk diffusion method and polymerase chain reaction (PCR). Following this, different classes of antibiotics were evaluated for their antibacterial activity at pH 5, 6, 7 and 8 by a microdilution method. Gentamicin (GEN) was the most potent antibacterial agent against E. coli strains. The effect of GEN on the relative expression of marR and sdiA genes was evaluated by quantitative PCR. The slightly acidic pH (pH 6) and GEN treatment induced the upregulation of marR antibiotic resistance and sdiA QS activator genes in both E. coli strains. Consequently, bacteria had become more susceptible to GEN. It can be concluded that antibiotic activity is pH dependent and so the artificial manipulation of urinary pH can contribute to a more effective therapy of multidrug resistant bacterial infections.


2019 ◽  
Vol 20 (1) ◽  
pp. 125
Author(s):  
Connie Januari ◽  
Mirnawati Bachrum Sudarwanto ◽  
Trioso Purnawarman

Antibiotic use in farm is spread widely to treat of poultry disease including therapy, supportive or preventive use and as afeed additive to improve chicken performance. The negative effects of antibiotic use can increase the level of bacterial resistance to antibiotics. This study aimed to investigate on antibiotic resistance in Escherichia coli isolated from chicken meat that were sold in Traditional Market of Bogor City. A total of 175 samples of chicken meat were taken by purposive sampling method, out of 175 found 50 positive samples of E. coli. The samples were subjected to E. coli examination and the isolated E. coli were tested for the antibiotic resistance using eight antibiotics, i.e., amoxicillin, cefotaxime, colistin, nalidixid acid, streptomycin, erythromycin, oxytetracillin, and tetracycline. The study was conducted by using the disk diffusion method on Muller-Hinton agar according to the Clinical and Laboratory Standards Institute guidelines. The study showed E. coli isolated from chicken meat were resistance towards amoxicilin (90%), colistin (94%), nalidixid acid (86%), streptomycin (98%), erythromycin (98%), oxytetracillin (84%), tetracycline (86%), and cefotaxime antibiotics (12%). The proportion of multidrugresistant was 99%. The higher of multidrug-resistant indicated the E. coli would be a threat to public and environmental health. 


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
S. A. Omolajaiye ◽  
K. O. Afolabi ◽  
B. C. Iweriebor

Background. Diarrhea has been reported as the leading cause of childhood mortality and morbidity globally but with disproportionate impacts in developing nations. Among bacterial etiologic agents of diarrhea, diarrheagenic Escherichia coli is the main cause of the disease among children under the age of 5 years. This study is aimed at determining the prevalence and antibiogram pattern of diarrheagenic Escherichia coli (DEC) pathotypes associated with diarrhea cases in the study area. Methods. A total of 120 presumptive isolates of E. coli were obtained from diarrheal stool samples from male and female patients below 12 years of age using chromogenic agar. Confirmation of the isolates and screening for virulence genes were determined by polymerase chain reaction (PCR) while antimicrobial susceptibility testing was performed using the disk diffusion method. The presence of antibiotic resistance genes to chloramphenicol and tetracycline among the confirmed isolates was also profiled by PCR based on the observed phenotypic resistance pattern. Results. Of the 120 presumptive isolates, 88.3% (106/120) were confirmed as E. coli through PCR. The molecular pathotyping of the confirmed isolates showed their distribution as 41% (43/106) of diffusely adhering E. coli (DAEC), 17% (18/106) of enterohemorrhagic E. coli (EHEC), 17% (18/106) of enteropathogenic E. coli (EPEC), and 10% (11/106) of enteroinvasive E. coli (EIEC), while enteroaggregative E. coli (EAEC) and enterotoxigenic E. coli (ETEC) were not detected, and the remaining 15% did not belong to any pathotype. Notably, high resistance of the isolates to commonly used antimicrobials was observed as follows: ampicillin (98%), chloramphenicol (94%), trimethoprim-sulfamethoxazole (96%), and tetracycline (90.6%), while a relatively low number of the confirmed isolates were resistant to ciprofloxacin (45%) and imipenem (36%). In addition, 94% of the isolates that exhibited phenotypic resistance against chloramphenicol harbored the catA1 resistance gene while 89% that showed resistance to tetracycline had tetA genes. Conclusions. These findings showed that DEC could be considered as the leading etiologic bacterial agent responsible for diarrhea in the study community, and the observable high degree of resistance of the isolates to antimicrobial agents is of huge significance, calling for stakeholders to adopt and consolidate the existing antimicrobial stewardship scheme of the government, in order to ensure an uncompromised public health.


Sign in / Sign up

Export Citation Format

Share Document