scholarly journals Pyr3 Induces Apoptosis and Inhibits Migration in Human Glioblastoma Cells

2018 ◽  
Vol 48 (4) ◽  
pp. 1694-1702 ◽  
Author(s):  
Hsin-Han Chang ◽  
Yu-Chen Cheng ◽  
Wen-Chiuan Tsai ◽  
Min-Jen Tsao ◽  
Ying Chen

Background/Aims: Glioblastoma, also known as glioblastoma multiforme (GBM), is a fast-growing type of tumor that is the most aggressive brain malignancy in adults. According to GEO profile analysis, patients with high transient receptor potential canonical 3 (TRPC3) expression have poor survival rates. The aim of this study is to evaluate the effects of Ethyl-1-(4-(2,3,3-trichloroacrylamide)phenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylate (Pyr3), a selective TRPC3 channel blocker, on the proliferation and migration of human glioblastoma cells. Methods: We first analyzed the TRPC3 mRNA expression in Gene Expression Omnibus (GEO) database. Then, TRPC3 protein expression was analyzed by Western blotting in three human GBM cell lines. The survival rate was measured by sulforhodamine B. JC1 staining was used to analyze the mitochondria membrane potential by flow cytometric analysis. Besides, the migration and invasion were evaluated by wound healing and Transwell assays. Annexin V and 7-aminoactinomycin D staining was used to monitor the apoptosis by flow cytometric analysis. The expression of apoptotic-related and migration-related proteins after Pyr3 treatment was detected by Western blotting. In addition, an orthotropic xenograft mouse model was used to assay the effect of Pyr3 in the in vivo study. Results: Basis on the results of bioinformatics study, glioma patients with higher TRPC3 expression had a shorter survival time than those with lower TRPC3 expression. GBM cell proliferation was decreased by Pyr3 treatment. The migration and invasion abilities of glioma cells were also inhibited via focal adhesion kinase and myosin light chain dephosphorization after Pyr3 treatment. Moreover, Pyr3 induced caspase-dependent apoptosis and mitochondria membrane potential imbalance in the GBM cells. In a xenograft animal model, Pyr3 in combination with temozolomide (TMZ) inhibited GBM tumor growth. Conclusion: Pyr3 inhibited GBM tumor growth in vitro and in vivo. Pyr3-TMZ combination therapy could be used to treat glioblastoma in the future.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jiangfeng Lv ◽  
Yan Wu ◽  
Wei Li ◽  
Huaping Fan

Hepatoblastoma (HB) is a kind of tumor that occurs frequently in children and is highly malignant. Here, the function of ROS modulator 1 (ROMO1) was identified in the development of HB. In this study, the mRNA expression of ROMO1 was measured by RT-qPCR. Colony formation assay, MTT assay, and flow cytometric analysis were applied to detect cell viability. The cell migrative and invasive ability was measured by wound healing and transwell assays. Tumor xenografts were performed to examine tumor growth. The results showed that upregulation of ROMO1 was identified in liver hepatocellular carcinoma (LIHC) tissues and predicted poor prognosis in LIHC patients. And ROMO1 expression was also increased in HB tissues and cells. Functionally, ROMO1 knockdown restrained cell viability, migration, and invasion in HB. In addition, knockdown of ROMO1 was found to suppress tumor formation in vivo. In conclusion, upregulation of ROMO1 promotes tumor growth and cell aggressiveness in HB.


2018 ◽  
Vol 49 (6) ◽  
pp. 2382-2395 ◽  
Author(s):  
Qing Ou-yang ◽  
Xuzhi He ◽  
Anqi Yang ◽  
Bing Li ◽  
Minhui Xu

Background/Aims: Glioblastoma is the most common and aggressive brain tumor and carries a poor prognosis. Previously, we found that neurotensin receptor 1 (NTSR1) contributes to glioma progression, but the underlying mechanisms of NTSR1 in glioblastoma invasion remain to be clarified. The aim of this study was to investigate the molecular mechanisms of NTSR1 in glioblastoma invasion. Methods: Cell migration and invasion were evaluated using wound-healing and transwell assays. Cell proliferation was detected using CCK-8. The expression of NTSR1, Jun, and suppressor of cytokine signaling 6 (SOCS6) was detected using western blotting. The expression of miR-494 was detected by Quantitative real-time PCR. Chromatin immunoprecipitation assay was performed to examine the interaction between Jun and miR-494 promoter. Dual-luciferase reporter assay and western blotting were performed to identify the direct regulation of SOCS6 by miR-494. An orthotopic xenograft mouse model was conducted to assess tumor growth and invasion. Results: NTSR1 knockdown attenuated the invasion of glioblastoma cells. Jun was positively regulated by NTSR1, which promoted miR-494 expression through binding to miR-494 promoter. SOCS6 was confirmed as a direct target of miR-494, thus, NTSR1-induced miR-494 upregulation resulted in SOCS6 downregulation. Both miR-494 and SOCS6 were involved in the NTSR1-induced invasion of glioblastoma cells. In vivo, tumor invasion and growth were inhibited by NTSR1 knockdown, but were restored with miR-494 overexpression. Conclusion: NTSR1 knockdown inhibited glioblastoma invasion via the Jun/miR-494/SOCS6 axis.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Jing Liu ◽  
Ying Liu ◽  
Jianqiang Zhang ◽  
Dan Liu ◽  
Yafeng Bao ◽  
...  

Abstract Angiogenesis and the activation of AKT/mTOR pathway are crucial for hepatocarcinoma development and progression, the activation of mTORC1/2 and relevant substrates have been confirmed in clinical hepatocarcinoma samples. Therefore, AKT/mTOR pathway represents the major targets for anti-cancer drugs development. Here, we investigated the anti-proliferative activity and mechanisms of ZJQ-24 in hepatocellular carcinoma, both in vivo and in vitro. A hepatocellular carcinoma xenograft model showed that ZJQ-24 significantly inhibited tumor growth with few side effects. MTT assays, flow cytometric analysis, Western blotting and immunohistochemistry identified that ZJQ-24 effectively suppressed hepatocellular carcinoma cell proliferation via G2/M phase arrest and caspase-dependent apoptosis but had no cytotoxic on normal cells. Furthermore, ZJQ-24 significantly blocked AKT/mTOR signaling by down-regulation of mTORC1 molecules, including phospho-p70S6K (Thr389) and phospho-4EBP-1 (Ser65, Thr37/46, Thr70) and phospho-AKT (Ser473) in HCC cells. It is very important that the ZJQ-24 did not induce the mTORC1-depdent PI3K/Akt feedback activation through JNK excitation. Moreover, ZJQ-24 inhibited the cap-dependent translation initiation by impairing the assembly of the eIF4E/eIF4G complex. Immunohistochemistry further confirmed ZJQ-24 inhibited the tumor growth through suppression of VEGF and AKT/mTOR pathways in vivo. Thus, the present study is the first to illustrate that ZJQ-24 triggers antiangiogenic activity and apoptosis via inhibiting the AKT/mTOR pathway in hepatocellular carcinoma cells, providing basic scientific evidence that ZJQ-24 shows great potential function as inhibitor of angiogenesis and tumor growth in hepatocellular carcinoma.


2018 ◽  
Vol 51 (4) ◽  
pp. 1679-1694 ◽  
Author(s):  
Meihan Liu ◽  
Xiaochun Sun ◽  
Shaomin  Shi

Background/Aims: In this study, we aimed to investigate how MORC family CW-type zinc finger 2 (MORC2) affects tumor progression of lung cancer. Methods: The MORC2 level was analyzed by real-time RT-PCR and immunohistochemistry (IHC) in normal control tissues and lung cancers. LL/2 cells overexpressing MORC2 were used to study how MORC2 expression influences lung cancer progression. The effects of MORC2 on cell viability, migration and invasion were assessed by MTT assay, Western blotting, and transwell assays, respectively. Afterwards, the effects of MORC2 on the activation of the Wnt/β-catenin pathway were explored by Western blotting. The effects of MORC2 on tumor-associated macrophages (TAM) were determined by immunofluorescence (IF) staining, real-time RT-PCR and Western blotting. Results: Our results showed that MORC2 was upregulated in lung cancers relative to adjacent tissues. The results also demonstrated that MORC2 promoted lung cancer tumor growth in vivo. Additionally, MORC2 overexpression stimulated the upregulation of vascular endothelial growth factor (VEGF), driving angiogenesis. MORC2 overexpression in LL/2 also increased the amount of aldehyde dehydrogenase-1 (ALDH1) protein, indicating that MORC2 increased cancer stem cell features. We further determined that MORC2 activated Wnt/β-catenin signaling in lung cancer cells. Upregulation of macrophage-recruiting genes including VEGF and Macrophage-specific colony stimulating factor (CSF-1) recruits TAMs to the tumor site, which has the net effect of promoting additional tumor growth and metastasis. Conclusion: Our data suggest that MORC2 overexpression can drive lung cancer growth by stimulating the recruitment of TAMs in addition to angiogenesis and that activation of Wnt/β-signaling may be a key pathway underlying this phenotype that is amenable to pharmacological intervention.


Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 210
Author(s):  
Ting Gu ◽  
Wei Yuan ◽  
Chen Li ◽  
Zhilong Chen ◽  
Yuting Wen ◽  
...  

α-Solanine, a bioactive compound mainly found in potato, exhibits anti-cancer activity towards multiple cancer cells. However, its effects on human choriocarcinoma have not been evaluated. In the present study, we investigated the effect of α-solanine on cell proliferation and apoptosis in human choriocarcinoma in vitro and in vivo. The results showed that α-solanine, at concentrations of 30 μM or below, did not affect the cell viability of the choriocarcinoma cell line JEG-3. However, colony formation was significantly decreased and cell apoptosis was increased in response to 30 μM α-solanine. In addition, α-solanine (30 μM) reduced the migration and invasion abilities of JEG-3 cells, which was associated with a downregulation of matrix metalloproteinases (MMP)-2/9. The in vivo findings provided further evidence of the inhibition of α-solanine on choriocarcinoma tumor growth. α-Solanine suppressed the xenograft tumor growth of JEG-3 cells, resulting in smaller tumor volumes and lower tumor weights. Apoptosis was promoted in xenograft tumors of α-solanine-treated mice. Moreover, α-solanine downregulated proliferative cellular nuclear antigen (PCNA) and Bcl-2 levels and promoted the expression of Bax. Collectively, α-solanine inhibits the growth, migration, and invasion of human JEG-3 choriocarcinoma cells, which may be associated with the induction of apoptosis.


1999 ◽  
Vol 7 (2) ◽  
pp. E5
Author(s):  
Roger Breyer ◽  
Sami Hussein ◽  
Dorel L. Radu ◽  
Klaus-Martin Pütz ◽  
Sven Gunia ◽  
...  

Glioblastoma multiforme (GBM) invasiveness is a complex process that involves recognition and attachment of GBM cells to particular extracellular matrix (ECM) molecules prior to migrating into proteolytically modified matrix and inducing angiogenesis. The CD44, which is a transmembrane adhesion molecule found on a wide variety of cells including GBM, has been suggested as the principal mediator of migration and invasion. The aim of the present study was to demonstrate whether an antibody specific to the standard form of CD44 (CD44s, 85-90 kDa) might prevent invasion and thus disrupt progression of C6 GBM in vivo. Immunostaining demonstrated homogenous expression of CD44s on the surface of C6 GBM cells and tumors. Flow cytometric analysis demonstrated binding saturation of anti-CD44s mAb to the receptor at 1 μg/5 X 105 cells. Blocking of CD44s in vitro resulted in a dose-dependent progressive (up to 94 ± 2.7%; mean ± standard deviation [SD]) detachment of C6 cells from ECM-coated culture surfaces. Blocking of CD44s in vivo resulted in significantly reduced C6 brain tumors (3.6 ± 0.4% [SD])--measured as the quotient: tumor surface (mm2)/brain surface (mm2) X 100--as compared with untreated (19.9% ± 0.9%) or sham-treated rats (19.2 ± 1.1% to 19.3 ± 2.5% [SD]). Disruption of C6 GBM progression correlated with an improved food intake; treated rats were significantly less cachectic (166.6 ± 16.4 g [SD]) than those that were untreated (83.0 ± 2.7 g [SD]) or sham-treated (83.4 ± 1.1 g to 83.0 ± 2.2 g [SD]) rats. The authors conclude that CD44s-targeted treatment with specific mAb may represent an effective means for preventing progression of highly invasive GBMs.


2020 ◽  
Author(s):  
Wei Zhang ◽  
Ganzhu Feng

Objectives: Lung cancer has been reported as the leading cause of cancer-associated death in humans, and its incidence continues to increase in the world. A growing number of studies have shown that dysregulated genes are associated with the occurrence and poor prognosis of a variety of tumors, including NSCLC. C1q/tumor necrosis factor-related protein 6 (C1QTNF6), a member of the CTRP family, has been revealed to play a role in carcinogenesis and cancer progression. Nevertheless, the effects and mechanisms of C1QTNF6 in NSCLC remain unrevealed. Materials and methods: MTT and colony formation, flow cytometric and transwell assays were performed to explore the cell function. RT-PCR and western blot were used to analyze the mRNA and protein expression. Results: In this study, we found that C1QTNF6 significantly promoted the proliferation of SPCA1 and A549 cells by MTT and colony formation assays. In addition, downregulation of C1QTNF6 weakened the tumor growth in vivo. Besides, C1QTNF6 remarkably reduced apoptosis by flow cytometric analysis and TUNEL assay. Furthermore, the capability of migration and invasion was obviously enhanced when C1QTNF6 overexpression. Conclusion: Overall, our results demonstrated that inhibition of C1QTNF6 attenuated cell proliferation, migration, invasion and promoted apoptosis in vitro and in vivo of NSCLC. Based on the above results, our study provided us with a new and key perspective in understanding and treating NSCLC.


2021 ◽  
Vol 71 (9) ◽  
Author(s):  
Huifang Zhou ◽  
Wen Liu ◽  
Haiyun Chen ◽  
Jiajia Ni ◽  
Zhi Zhang ◽  
...  

Abstract Objective: To verify the role of miR-425 in colorectal carcinogenesis. Methods: We conducted sphere formation assay, wound-healing assay, transwell assay, MTT cell proliferation assay, flow cytometric analysis, reverse transcription qPCR, and Western blotting to analyse proliferation and invasion of HCT116 cells transfected with miR-425 mimics, miR-425 inhibitor, miR-425 mimic negative control, and miR-425 inhibitor negative control, respectively. The experimental protocol was approved by the Medical Ethics Committee of the First People’s Hospital in Kashi (approval number: 2018 Kuaishen No. (100)). All experiments were conducted during December 2016 to July 2017 at Xinjiang Dingju Medical Laboratory, China. Results: Our results showed that miR-425 expression in HCT116 cells after transfection was up-regulated, which inhibited sphere formation. Overexpression of miR-425 inhibited proliferation of HTC116 cells and induced their apoptosis, and inhibited HCC116 cell migration and invasion. Conclusion: Overexpression of miR-425 could inhibited sphere formation, the migration and invasion of HCT116 cells through inhibiting proliferation and promoting apoptosis. Keywords: apoptosis; colonic carcinoma; microRNA; proliferation Continuous....


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Chun Cheng ◽  
Jun Yang ◽  
Si-Wei Li ◽  
Guofu Huang ◽  
Chenxi Li ◽  
...  

AbstractHistone deacetylases (HDACs) are involved in tumor progression, and some have been successfully targeted for cancer therapy. The expression of histone deacetylase 4 (HDAC4), a class IIa HDAC, was upregulated in our previous microarray screen. However, the role of HDAC4 dysregulation and mechanisms underlying tumor growth and metastasis in nasopharyngeal carcinoma (NPC) remain elusive. Here, we first confirmed that the HDAC4 levels in primary and metastatic NPC tissues were significantly increased compared with those in normal nasopharyngeal epithelial tissues and found that high HDAC4 expression predicted a poor overall survival (OS) and progression-free survival (PFS). Functionally, HDAC4 accelerated cell cycle G1/S transition and induced the epithelial-to-mesenchymal transition to promote NPC cell proliferation, migration, and invasion in vitro, as well as tumor growth and lung metastasis in vivo. Intriguingly, knockdown of N-CoR abolished the effects of HDAC4 on the invasion and migration abilities of NPC cells. Mechanistically, HDAC3/4 binds to the E-cadherin promoter to repress E-cadherin transcription. We also showed that the HDAC4 inhibitor tasquinimod suppresses tumor growth in NPC. Thus, HDAC4 may be a potential diagnostic marker and therapeutic target in patients with NPC.


Author(s):  
Yuanyuan Wang ◽  
Shanqi Guo ◽  
Yingjie Jia ◽  
Xiaoyu Yu ◽  
Ruiyu Mou ◽  
...  

ABSTRACT Prostate cancer (PCa) is one of the important factors of cancer deaths especially in the western countries. Hispidulin (4′,5,7-trihydroxy-6-methoxyflavone) is a phenolic flavonoid compound proved to possess anticancer properties, but its effects on PCa are left to be released. The aims of this study were to investigate the effects and the relative mechanisms of Hispidulin on PCa development. Hispidulin administration inhibited proliferation, invasion, and migration, while accelerated apoptosis in Du145 and VCaP cells, which was accompanied by PPARγ activation and autophagy enhancement. The beneficial effects of Hispidulin could be diminished by PPARγ inhibition. Besides, Hispidulin administration suppressed PCa tumorigenicity in Xenograft models, indicating the anticancer properties in vivo. Therefore, our work revealed that the anticancer properties of Hispidulin might be conferred by its activation on PPARγ and autophagy.


Sign in / Sign up

Export Citation Format

Share Document