scholarly journals Circular RNA Expression Profile and Analysis of Their Potential Function in Psoriasis

2018 ◽  
Vol 50 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Meng Qiao ◽  
Jian Ding ◽  
Jianjun Yan ◽  
Ronghua Li ◽  
Jian Jiao ◽  
...  

Background/Aims: Circular RNAs (circRNAs) are evolutionary conserved circular non-coding RNAs that play a role in several diseases by sequestering (sponging) microRNAs (miRNAs). However, their role in psoriasis remains unclear. In the present study, we investigated the expression of circRNAs and analyzed their potential functions in psoriasis. Methods: The SBC human ceRNA array V1.0 was used to analyze circRNA expression in psoriatic lesions and normal healthy skin tissues. Functional analyses were performed using Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Putative miRNA response elements (MREs) were identified using miRNA target prediction software. Six upregulated circRNAs were verified by quantitative real-time reverse transcription polymerase chain reaction in psoriatic lesions and healthy skin tissues. Results: A total of 4956 circRNAs (3016 upregulated and 1940 downregulated; fold change ≥2 and p< 0.05) were identified as differentially expressed in psoriasis. Furthermore, 4405 MREs were identified among the differentially expressed circRNAs. hsa_circ_0061012 was upregulated in psoriatic lesions compared with normal healthy skin tissues. The top five MREs of hsa_circ_0061012 were hsa-miR-7157-5p, hsa-miR-4769-3p, hsa-miR-6817-5p, hsa-miR-4310, and hsa-miR-6882-3p. GO analysis was carried out to investigate the biological functions enriched among the upregulated targets of five miRNAs in psoriasis. The GO analysis identified that most of top 30 of GO enrichment are related to psoriasis. Conclusion: hsa_circ_0061012 might be a candidate biomarker for psoriasis. The results provide a new perspective for a better understanding of ceRNA-mediated gene regulation in psoriasis, and provide a novel theoretical basis for further studies on the function of circRNA in psoriasis.

2021 ◽  
Author(s):  
Luzheng Liu ◽  
Jiacheng Chen ◽  
Liang Chen ◽  
Cheng Chen ◽  
Dafeng Xu ◽  
...  

Abstract BACKGROUND Circular RNA (CircRNA) and HBx genes separately play essential roles in the occurrence and development of hepatitis B (HBV)-related hepatocellular carcinoma (HCC). However, whether HBx expression in HCC is co-related to differential circRNA patterns remains unknown. METHODS HCC cell lines with HBx overexpression (HepG2 H6679) and empty vector control (HepG2 H5298) were successfully constructed. The high-throughput second-generation transcriptome sequencing technology (RNA-seq) was employed to sequence the two cell lines, and the selected circRNAs were verified by qPCR (quantitative real-time PCR). The differentially expressed circRNAs were analyzed. Bioinformatics analyses, including clustering, differential expression, GO analysis, and KEGG pathway, were performed. Target Scan and Miranda software were employed to predict miRNAs corresponding with circRNAs. RESULTS We identified 1120 circRNAs upregulated and 1447 circRNAs downregulated in HepG2 cell lines with HBx overexpression compared to its control. We selected 36 circRNAs with significant differences (also consistent with log2fold change absolute value ≥ 1.0 or P ≤ 0.05) displayed by cluster analysis and then performed qPCR validation. Among them, 15 circRNAs (hsa_circ_0005603, hsa_circ_0004448, hsa_circ_0006845, hsa_circ_0064654, hsa_circ_0006460, hsa_circ_0045350, hsa_circ_0000824, hsa_circ_0005227, hsa_circ_0067991, hsa_circ_0064656, hsa_circ_0005224, circRNA11716, circRNA759, circRNA14848 and circRNA13751) are consistent with sequencing results. Hsa_circ_0005603 and hsa_circ_0006845 showed significant differences and were chosen for further study. GO analysis shows that many target genes are involved in biological processes, cellular components, and molecular functions. Nearly 193 target genes were enriched on KEGG pathways analysis. Actin cytoskeleton regulation, tight junction, and FoxO signaling pathway are among the top three pathways involved in most genes. We predicted that hsa_circ_0005603 might interact with micro-RNAs, including miR-182-5p, hsa-miR-27a-3p, hsa-miR-98-5p, and hsa-miR-198, that might thereby regulate downstream genes involved in tumor progression. Similarly, hsa_circ_0006845 was predicted to be referred to HBV-related HCC by acting as a sponge for hsa-miR-106a-3p and hsa-miR-198. Furthermore, we discovered two novel circular RNAs (circRNA11716 and circRNA13751) which might be involved in HCC occurrence. CONCLUSION In this study, we comprehensively explored the differentially expressed circRNAs in HepG2 cells with different HBx expression, and our results indicate that hsa_circ_0005603, hsa_circ_0006845, and novel circular RNAs (circRNA11716 and circRNA13751) might play an important role in HBV-related HCC, deserving further research.


Author(s):  
Han-Wen Chen ◽  
Xiao-Xia Zhang ◽  
Zhu-Ding Peng ◽  
Zu-Min Xing ◽  
Yi-Wen Zhang ◽  
...  

AbstractTreatment of bone cancer pain (BCP) caused by bone metastasis in advanced cancers remains a challenge in clinical oncology, and the underlying mechanisms of BCP are poorly understood. This study aimed to investigate the pathogenic roles of circular RNAs (circRNAs) in regulating cancer cell proliferation and BCP development. Eight differentially expressed circRNAs in the rat spinal cord were validated by agarose gel electrophoresis and Sanger sequencing. Expression of circRNAs and mRNAs was detected by quantitative RT-PCR. MTS assay and flow cytometry were performed to analyze cell proliferation and apoptosis, respectively. Differentially expressed mRNA profiles were characterized by deep RNA sequencing, hierarchical clustering, and functional categorization. The interactions among circRNAs, microRNAs (miRNAs), and mRNAs were predicted using TargetScan. Additionally, western blot was performed to determine the protein levels of Pax8, Isg15, and Cxcl10. Multiple circRNAs were differentially expressed in the spinal cords of BCP model rats; of these, circSlc7a11 showed the greatest increase in expression. The overexpression of circSlc7a11 significantly promoted cell proliferation and repressed apoptosis of LLC-WRC 256 and UMR-106 cells, whereas circSlc7a11 silencing produced the opposite effects. Altered expression of circSlc7a11 also induced substantial changes in the mRNA expression profiles of LLC-WRC 256 cells; these changes were linked to multiple apoptotic processes and signaling pathways, such as the chemokine signaling pathway, and formed a complex circRNA/miRNA/mRNA network. Additionally, Pax8, Isg15, and Cxc110 protein level in LLC-WRC 256 cells was consistent with the mRNA results. The circRNA circSlc7a11 regulates rat BCP development by modulating LLC-WRC 256 cell proliferation and apoptosis through multiple-signaling mechanisms.


2021 ◽  
Vol 22 (14) ◽  
pp. 7477
Author(s):  
Rok Razpotnik ◽  
Petra Nassib ◽  
Tanja Kunej ◽  
Damjana Rozman ◽  
Tadeja Režen

Circular RNAs (circRNAs) are increasingly recognized as having a role in cancer development. Their expression is modified in numerous cancers, including hepatocellular carcinoma (HCC); however, little is known about the mechanisms of their regulation. The aim of this study was to identify regulators of circRNAome expression in HCC. Using publicly available datasets, we identified RNA binding proteins (RBPs) with enriched motifs around the splice sites of differentially expressed circRNAs in HCC. We confirmed the binding of some of the candidate RBPs using ChIP-seq and eCLIP datasets in the ENCODE database. Several of the identified RBPs were found to be differentially expressed in HCC and/or correlated with the overall survival of HCC patients. According to our bioinformatics analyses and published evidence, we propose that NONO, PCPB2, PCPB1, ESRP2, and HNRNPK are candidate regulators of circRNA expression in HCC. We confirmed that the knocking down the epithelial splicing regulatory protein 2 (ESRP2), known to be involved in the maintenance of the adult liver phenotype, significantly changed the expression of candidate circRNAs in a model HCC cell line. By understanding the systemic changes in transcriptome splicing, we can identify new proteins involved in the molecular pathways leading to HCC development and progression.


2018 ◽  
Vol 51 (3) ◽  
pp. 1389-1398 ◽  
Author(s):  
Lili Zhu ◽  
Tingting Ren ◽  
Zixin Zhu ◽  
Mingliang  Cheng ◽  
Qiuju Mou ◽  
...  

Background/Aims: Hepatic stellate cells (HSCs) are the primary cell type responsible for liver fibrosis. Our study proved that thymosin beta 4 (Tβ4) has anti-fibrogenic effects in HSCs through PI3K/AKT pathway. However, the underlying mechanisms are not fully elucidated. Circular RNAs (circRNAs) play important roles in fine-tuning gene expression and are often deregulated in cancers. However, the expression profile and clinical significance of in liver fibrosis is still unknown. Therefore, we hypothesize that Tβ4 influences circRNAs in liver fibrosis. Methods: Circular RNA microarray was conducted to identify Tβ4-related circRNAs. Pathway analysis and miRNA response elements analysis was conducted to predict the potential roles of differentially expressed circRNAs in liver fibrosis. CCK8 assays and flow cytometric assays were conducted to clarify the role of circRNA in liver fibrosis. Bioinformatics analysis and in vitro experiments were conducted to clarify the mechanism of circRNA-mediated gene regulation in liver fibrosis. Results: A total of 644 differentially expressed circRNAs were identified between the Tβ4-depleted LX-2 cells and the control LX2 cells. The expression of circRNA-0067835 was significantly increased in the Tβ4-depleted LX-2 cells compared with control. Knockdown of circRNA-0067835 observably decreased LX-2 cell proliferation by causing G1 arrest and promoting apoptosis. Bioinformatics online programs predicted that circRNA-0067835 acted as miR-155 sponge to regulate FOXO3a expression, which was validated using luciferase reporter assay. Conclusion: Our experiments showed that circRNA-0067835 regulated liver fibrosis progression by acting as a sponge of miR-155 to promote FOXO3a expression, indicating that circRNA-0067835 may serve as a potential therapeutic target for patients with liver fibrosis.


2020 ◽  
Vol 38 (4_suppl) ◽  
pp. 230-230
Author(s):  
Manuel Valladares-Ayerbes ◽  
Carmen Garrigos ◽  
Miquel Taron ◽  
Angélica Figueroa ◽  
Enrique Aranda

230 Background: Circular RNAs (circRNAs) are emerging as essential regulators of cancer- related biological hallmarks, as cell proliferation, apoptosis, differentiation, immune regulation and angiogenesis. CircRNAs are abundant, conserved, and have a tissue‐specific expression pattern. These characteristics make them candidate to serve as biomarkers in liquid biopsy (LB) in cancer. The aim of this study is to analyse differential expression of circRNAs in the colorectal cancer (CRC) scenario. Methods: To comprehensively understand the expression patterns of circRNAs we characterized 13,617 circRNAs using a microarray [Arraystar v2 (8x15K)] in 10 human samples, five CRC cell lines, one colorectal human tumour, one normal colon healthy control, vs. Peripheral Human Blood Leukocytes (2 pools) and Human Bone Marrow. Differentially expressed circRNAs were identified using fold change (FC) cut-off or through Volcano Plot filtering respectively. CircRNAs having FC ▪2 and P-values ▪ 0.05 were selected. CircRNA/microRNA interaction was predicted with target prediction software. Results: Hierarchical clustering showed distinguishable circRNA expression profiling among 10 samples. These data indicated that circRNAs have a different expression pattern in colorectal tissues compared with that in blood and bone marrow tissues. The microarray data showed 2329 circRNAs differentially expressed (FC > 2.0, P < 0.05). Among them, 964 circRNAs were upregulated and 1365 were downregulated in colon tissues compared with blood and bone marrow. Using a stringent criterion (FC > 10, P≤ 0.01 and false discovery rate [FDR] < 0.05) we have identified 30 circRNA upregulated in colorectal cancer versus non tumour samples. CircRNA/microRNA interaction prediction analysis showed that most upregulated circRNAs contain miRNA Binding Sites (MREs) for cancer-related miRNA, including among others, miR-17, miR-103, miR-let-7g. Conclusions: Microarray analysis was used to comprehensively identify dysregulated circRNAs in CRC. We identify novel circRNAs could be valuable as blood-based CRC biomarkers.


2017 ◽  
Vol 44 (4) ◽  
pp. 1271-1281 ◽  
Author(s):  
Jiajia Zheng ◽  
Zhenrong Li ◽  
Tiancheng Wang ◽  
Yang Zhao ◽  
Yongfeng Wang

Background/Aims: Circular RNAs (circRNAs) play a crucial role in the occurrence of several diseases, including autoimmune diseases. However, their role in primary biliary cholangitis (PBC) remains unclear. Here, we aimed to determine the circRNA expression profile in plasma from PBC patients and further explore the value of circRNA in diagnosing PBC. Methods: CircRNA microarrays were used to determine circRNA expression profiles in plasma samples from 6 PBC patients and 6 healthy controls. Statistical analyses identified differentially expressed circRNAs, and these circRNAs were verified by qRT-PCR in 29 PBC patients and 30 healthy controls. MicroRNA (miRNA) target prediction software identified putative miRNA response elements (MREs), which were used to construct a map of circRNA-miRNA interactions for the differentially expressed circRNAs. Results: Our results indicated that there were 18 up-regulated and 4 down-regulated circular RNAs in the plasma from PBC patients compared with that from healthy individuals. Among the differentially expressed circRNAs, hsa_circ_402458 (P=0.0033), hsa_circ_087631 and hsa_circ_406329 (P=0.0185) were up-regulated, and hsa_circ_407176 (P=0.0066) and hsa_circ_082319 were down-regulated in the PBC group versus the healthy group as demonstrated by qRT-PCR. In particular, hsa_circ_402458 was significantly higher in PBC patients not receiving UDCA treatment than in PBC patients receiving UDCA treatment (P=0.0338). The area under the receiver operating characteristic curve for hsa_circ_402458 for diagnosing PBC was 0.710 (P=0.005). For hsa_circ_402458, two putative miRNA targets, hsa-miR-522-3p and hsa-miR-943, were predicted. Conclusions: circRNA dysregulation may play a role in PBC pathogenesis, and hsa_circ_402458 shows promise as a candidate biomarker for PBC.


2018 ◽  
Vol 45 (2) ◽  
pp. 706-719 ◽  
Author(s):  
Bai-Hui Liu ◽  
Bin-Bin Zhang ◽  
Xiang-Qi Liu ◽  
Shan Zheng ◽  
Kui-Ran Dong ◽  
...  

Background/Aims: Hepatoblastoma is the most common malignant pediatric liver cancer. circular RNAs (circRNAs) play important roles in fine-tuning gene expression and are often deregulated in cancers. However, the expression profile and clinical significance of circRNAs in hepatoblastoma is still unknown. Methods: Circular RNA microarray was conducted to identify hepatoblastoma-related circRNAs. GO analysis, pathway analysis, and miRNA response elements analysis was conducted to predict the potential roles of differentially expressed circRNAs in hepatoblastoma. MTT assays, Ki67 staining, and Transwell assays were conducted to clarify the role of circRNA in hepatoblastoma in vitro. Bioinformatics analysis and in vitro experiments were conducted to clarify the mechanism of circRNA-mediated gene regulation in hepatoblastoma cell. Results: 869 differentially expressed circRNAs were identified between hepatoblastoma and adjacent normal liver samples, including 421 up-regulated circRNAs and 448 down-regulated circRNAs. The significant enriched GO term of hepatoblastoma-related circRNAs in biological process, cellular component, and molecular function were “chromosome organization”, “cytoplasm”, and “organic cyclic compound binding”. Tight junction signaling pathway was ranked the Top 1 potentially affected by circRNA-mediated regulatory network. circ_0015756 was significantly up-regulated in human hepatoblastoma specimens and metastatic hepatoblastoma cell lines. circ_0015756 silencing decreased hepatoblastoma cell viability, proliferation, and invasion in vitro. circ_0015756 acted as miR-1250-3p sponge to regulate hepatoblastoma cell function. Conclusions: circRNAs are involved in the pathogenesis of hepatoblastoma. circ_0015756 is a promising target for the prognosis, diagnosis, and treatment of hepatoblastoma.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Siqi Li ◽  
Junmei Yang ◽  
Xiaoting Liu ◽  
Rui Guo ◽  
Ruidong Zhang

Background. Emerging evidence has indicated that circular RNAs (circRNAs), recognized as functional noncoding transcripts in eukaryotic cells, may be involved in regulating many physiological or pathological processes. However, the regulation and function of circular RNA circITGA7 in thyroid cancer (TC) remains unknown. Methods. In this study, we found that circITGA7 is upregulated in TC cell lines. We then performed functional analyses in the cell lines to support clinical findings. Mechanistically, we demonstrated that circITGA7 can directly bind to miR-198 and reduce the inhibition effect of miR-198 on target FGFR1 expression. Results. We reported an upregulation of circITGA7 in patients with TC. Silencing of circITGA7 inhibits metastasis and proliferation of TC cell lines in vitro. In addition, in the TC cell lines, the knockdown of circITGA7 or overexpression of miR-198 significantly suppressed FGFR1 levels. Mechanistically, we found that circITGA7 acts as miR-198 competitive endogenous RNA (ceRNA) to regulate FGFR1 expression. Conclusions. In summary, circRNA circITGA7 may play a regulatory role in TC and may be a potential marker for TC diagnosis or progression.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 657
Author(s):  
Tianyi Xu ◽  
LiPing Wang ◽  
Peilin Jia ◽  
Xiaofeng Song ◽  
Zhongming Zhao

Recently, accumulating evidence has supported that circular RNA (circRNA) plays important roles in tumorigenesis by regulating gene expression at transcriptional and post-transcriptional levels. Expression of circRNAs can be epigenetically silenced by DNA methylation; however, the underlying regulatory mechanisms of circRNAs by DNA methylation remains largely unknown. We explored this regulation in hepatocellular carcinoma (HCC) using genome-wide DNA methylation and RNA sequencing data of the primary tumor and matched adjacent normal tissues from 20 HCC patients. Our pipeline identified 1012 upregulated and 747 downregulated circRNAs (collectively referred to as differentially expressed circRNAs, or DE circRNAs) from HCC RNA-seq data. Among them, 329 DE circRNAs covered differentially methylated sites (adjusted p-value < 0.05, |ΔM| > 0.5) in circRNAs’ interior and/or flanking regions. Interestingly, the corresponding parental genes of 46 upregulated and 31 downregulated circRNAs did not show significant expression change in the HCC tumor versus normal samples. Importantly, 34 of the 77 DE circRNAs (44.2%) had significant correlation with DNA methylation change in HCC (Spearman’s rank-order correlation, p-value < 0.05), suggesting that aberrant DNA methylation might regulate circular RNA expression in HCC. Our study revealed genome-wide differential circRNA expression in HCC. The significant correlation with DNA methylation change suggested that epigenetic regulation might act on both mRNA and circRNA expression. The specific regulation in HCC and general view in other cancer or disease requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document