scholarly journals miR-423-5p Inhibits Osteosarcoma Proliferation and Invasion Through Directly Targeting STMN1

2018 ◽  
Vol 50 (6) ◽  
pp. 2249-2259 ◽  
Author(s):  
Xuesong Wang ◽  
Lei Peng ◽  
Xiaojin Gong ◽  
Xiugong Zhang ◽  
Ruifu Sun ◽  
...  

Background/Aims: Increasing evidences suggest that dysregulated expression of miRNAs contributes to the progression of various tumors. However, the underlying function of miR-423-5p in osteosarcoma remains unexplored. Methods: The expression of miR-423-5p and STMN1 were determined in osteosarcoma samples and cell lines via quantitative real-time PCR. Colony formation and Cell Counting Kit-8 (CCK-8) assays were performed to measure cell proliferation ability and transwell analysis was used to detect cell invasion, and dual luciferase reporter assay was perform to analysis the interaction between the miR-423-5p and STMN1. Results: The expression levels of miR-423-5p and STMN1 in the osteosarcoma tissues and cell lines were measured by qRT-PCR. Cell viability was determined using the clone formation and CCK-8 assays. A dual-luciferase reporter and Western blot were performed to stdudy the target gene of miR-423-5p. Here, we showed that miR-423-5p expression was downregulated in osteosarcoma tissues and cell lines. However, the expression of stathmin1 (STMN1) was downregulated in osteosarcoma tissues and cell lines. Moreover, STMN1 expression level was negatively correlated with the miR-423-5p expression in the osteosarcoma tissues. We identified STMN1 was a direct target gene of miR-423-5p in osteosarcoma cell. Overexpression of miR-423-5p inhibited osteosarcoma cell proliferation, colony formation and invasion. Furthermore, we demonstrated that STMN1 was involved in miR-423-5p-mediated cell behavior such as cell proliferation, colony formation and invasion in the osteosarcoma cell. Conclusion: Our present study indicated that miR-423-5p acted as a tumor suppressor gene in osteosarcoma partly through inhibiting STMN1 expression.

2018 ◽  
Vol 46 (2) ◽  
pp. 442-450 ◽  
Author(s):  
Zhenxin Zheng ◽  
Feng Bao ◽  
Xuhong Chen ◽  
Hongbin Huang ◽  
Xiangfeng Zhang

Background/Aims: Growing evidence has shown that miR-330-3p is closely related to the biological behavior of cancer, including proliferation, metastasis, and prognosis. However, there have been no reports on miR-330-3p expression and function in osteosarcoma. Methods: Expression of miR-330-3p in osteosarcoma tissues and cell lines was examined by quantitative PCR. Effects of miR-330-3p on osteosarcoma cell proliferation were investigated in vitro with the Cell Counting Kit-8 colorimetric assay. Targets of miR-330-3p were identified by dual-luciferase reporter assay. Results: The results showed that expression of miR-330 decreased in osteosarcoma tissues and cell lines. Prognosis of patients with high miR-330-3p expression was much better than that of those with low expression (P=0.001), and multivariate analysis suggested that miR-330-3p is an independent prognostic factor for osteosarcoma. In addition, miR-330-3p overexpression significantly inhibited the growth of MG-63 and U2OS osteosarcoma cells. Dual-luciferase reporter assay demonstrated that Bmi-1 was a direct target gene of miR-330-3p, and in a recovery experiment, miR-330-3p suppressed osteosarcoma cell proliferation by directly targeting Bmi-1. Conclusion: Our results suggest that miR-330-3p acts as a tumor suppressor by regulating Bmi-1 expression in osteosarcoma. Thus, miR-330-3p may represent a novel therapeutic target for the treatment of osteosarcoma.


2021 ◽  
Vol 21 ◽  
Author(s):  
Tongqing Xue ◽  
Gang Yin ◽  
Weixuan Yang ◽  
Xiaoyu Chen ◽  
Cheng liu ◽  
...  

Background: Dysregulation of microRNAs (miRNAs) figures prominently in radio-sensitivity of non-small cell lung cancer (NSCLC). MiR-129-5p can block the development of a variety of tumors. However, whether miR-129-5p modulates radio-sensitivity of NSCLC cells remains unknown. Objective: This study was aimed to explore the role and the underlying mechanism of miR-129-5p in the radiosensitivity of NSCLC. Methods: Radio-resistant NSCLC cell lines (A549-R and H1299-R) were constructed using A549 and H1299 cells. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to quantify miR-129-5p, SRY-box transcription factor 4 (SOX4) mRNA, and RUNX family transcription factor 1 (RUNX1) mRNA expression levels. Cell apoptosis and cell cycle were detected by flow cytometry. Cell counting kit-8 (CCK-8) assay and colony formation experiments were used to measure cell proliferation. γ-H2AX was examined by Western blot to confirm DNA injury. Dual-luciferase reporter experiments were applied to analyze the interactions among miR-129-5p, RUNX1, and SOX4. Results: In A549-R and H1299-R cells, compared with the wild type cell lines, miR-129-5p expression was remarkably reduced while SOX4 and RUNX1 expressions were increased. The transfection of miR-129-5p into NSCLC cell lines, markedly induced cell apoptosis, DNA injury, and cell cycle arrest, and inhibited cell proliferation and colony formation. RUNX1 and SOX4 were validated as target genes of miR-129-5p, and the restoration of RUNX1 or SOX4 could counteract the influence of miR-129-5p on A549-R cells. Conclusion: MiR-129-5p sensitizes A549-R and H1299-R cells to radiation by targeting RUNX1 and SOX4.


2019 ◽  
Vol 18 ◽  
pp. 153303381987079
Author(s):  
Yingyong Wu ◽  
Jinyun Peng

MicroRNAs function as either tumor suppressor or oncogene in human cancers. This study aimed to explore the role of miR-27b in osteosarcoma. Expression of miR-27b or homeobox B8 in osteosarcoma cell lines was analyzed by quantitative real-time polymerase chain reaction and Western blot, respectively. Luciferase activity reporter assay and Western blot were conducted to explore the association between miR-27b and homeobox B8. Cell Counting Kit-8, colony formation assay, and wound-healing assay were performed to investigate the role of miR-27b or homeobox B8 on cell proliferation, colony formation, and cell migration. Expression of miR-27b was significantly reduced, while homeobox B8 was increased in osteosarcoma cell lines. In addition, homeobox B8 was validated as a direct target of homeobox B8. Moreover, miR-27b regulates osteosarcoma cell proliferation, colony formation, and migration through targeting homeobox B8. Taken together, our study provides novel insight into the progression of osteosarcoma, and the miR-27b–homeobox B8 axis identified may be developed as therapeutic targets against hepatocellular carcinoma in the future.


2018 ◽  
Vol 51 (3) ◽  
pp. 1364-1375 ◽  
Author(s):  
Dan Fei ◽  
Xiaona Zhang ◽  
Jinxiang Liu ◽  
Long Tan ◽  
Jie Xing ◽  
...  

Background/Aims: Novel long non-coding RNA Fer-1-like protein 4 (FER1L4) has been reported to play crucial regulatory roles in tumor progression. However, its clinical significance and biological role in osteosarcoma (OS) is completely unknown. The aim of the present study was to investigate the role of FER1L4 in OS progression and the underlying mechanism. Methods: We analyzed the expression levels of FER1L4 in tissues of OS patients and cell lines via quantitative RT-PCR (qRT-PCR). The effect of FER1L4 on cell proliferation, colony formation, migration and invasion was analyzed by cell counting kit-8 (CCK-8), colony formation, wound healing and transwell invasion assay, respectively. Novel targets of FER1L4 were selected through a bioinformatics soft and confirmed using a dual-luciferase reporter system and qRT-PCR. To detect the role of FER1L4 in vivo tumorigenesis, tumor xenografts were created. Results: We found that the expression of FER1L4 was significantly downregulated in OS tissues and cell lines; moreover, low expression of FER1L4 was associated with advanced tumor-nude-metastasis (TNM) stage, lymph node metastases, and poor overall survival. Functional assays showed that upregulation of FER1L4 significantly inhibited OS cell proliferation, colony formation, migration, and invasion in vitro, as well as suppressed tumor growth in vivo. Assays performed to determine the underlying mechanism, indicated that FER1L4 interacted directly with miR-18a-5p. Subsequently, we found that FER1L4 significantly increased PTEN expression, a known target of miR-18a-5p, in OS cells. Furthermore, PTEN was found to be down-regulated, and positively correlated with FER1L4 in OS tissues. Conclusion: These findings suggest that FER1L4, acting as a competing endogenous RNA (ceRNA) of miR-18a-5p, exerts its anti-cancer role by modulating the expression of PTEN. Thus, FER1L4 may be a novel target for the prevention and treatment of OS.


2017 ◽  
Vol 43 (2) ◽  
pp. 768-774 ◽  
Author(s):  
Tieying Tao ◽  
Qinrong Shen ◽  
Jianmin Luo ◽  
Yang Xu ◽  
Wenqing Liang

Background/Aims: Increasing evidence has shown that miR-125a plays important role in human cancer progression. However, little is known about the function of miR-125a in osteosarcoma. Methods: The expression of miR-125a in osteosarcoma tissues and cell lines were examined by qRT-PCR. The biological role of miR-125a in osteosarcoma cell proliferation was examined in vitro. The targets of miR-125a were identified by a dual-luciferase reporter assay. Results: The results showed that the expression of miR-125a expression is significantly lower in osteosarcoma tissues and cell lines. Survival curves showed that the survival of patients in high miR-125a expression was significantly longer than that of patients with low miR-125a expression, and multivariate analysis suggested that miR-125a is an independent prognostic factor for osteosarcoma patients. In addition, it was found in this study that miR-125a can inhibit the growth of osteosarcoma cells. The dual-luciferase reporter assay demonstrated that E2F2 is a novel target gene for miR-125a. In addition, in a recovery experiment, it was shown that miR-125a inhibits the biological function of osteosarcoma cells by inhibiting the expression of E2F2. Conclusion: Our results suggest that miR-125a acts as a tumor suppressor via regulation of E2F2 expression in osteosarcoma progression, and miR-125a may represent a novel therapeutic target for the treatment of osteosarcoma.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Caihong Wen ◽  
Xiaoqing Feng ◽  
Honggang Yuan ◽  
Yong Gong ◽  
Guangsheng Wang

Abstract Background Circular RNAs (circRNAs) feature prominently in tumor progression. However, the biological function and molecular mechanism of circ_0003266 in colorectal cancer (CRC) require further investigation. Methods Circ_0003266 expression in 46 pairs CRC tissues / adjacent tissues, and CRC cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR); after circ_0003266 was overexpressed or knocked down in CRC cells, cell proliferation, apoptosis, migration, and invasion were evaluated by the cell counting kit-8 (CCK-8), flow cytometry, and Transwell assays, respectively; the interaction among circ_0003266, miR-503-5p, and programmed cell death 4 (PDCD4) was confirmed using bioinformatics analysis and dual-luciferase reporter assay; PDCD4 protein expression in CRC cells was quantified using Western blot. Results Circ_0003266 was significantly lowly expressed in CRC tissues and cell lines. Circ_0003266 overexpression markedly repressed CRC cell proliferation, migration, and invasion, and accelerated the cell apoptosis, but its overexpression promoted the malignant phenotypes of CRC cells. PDCD4 was a direct target of miR-503-5p and circ_0003266 promoted PDCD4 expression by competitively sponging miR-503-5p. Conclusion Circ_0003266 suppresses the CRC progression via sponging miR-503-5p and regulating PDCD4 expressions, which suggests that circ_0003266 may serve as a novel target for the treatment of CRC.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Deng Xiang ◽  
Yugang Li ◽  
Yanshui Lin

In recent years, the mechanism of cancer research has become hotspots of life science and medicine, especially due to the rapid development of molecular medicine and bioinformatics research. Similarly, the molecular mechanism also has received increasing attention in osteosarcoma (OS) research. Also, a considerable amount of research confirmed that circular RNAs (circRNAs) could regulate cancer cell growth and metastasis. This study aimed to explore the effect of a circRNA, circCCDC66, on OS and reveal its potential molecular mechanism. High circCCDC66 expression level was found in OS patient-derived tissue samples and OS cell lines by qRT-PCR. The abilities cell proliferation and metastatic of U2OS and SW1353 cells were then assessed by Cell Counting Kit-8 and transwell assay, respectively. The interaction between circCCDC66 and its target miRNAs were verified by the dual-luciferase reporter assay. Through functional experiments, we found that circCCDC66 knockdown promoted the inhibition of cell proliferation and metastatic of OS cell lines. From mechanistic perspective, circCCDC66 upregulated PTP1B by sponging miR-338-3p. Collectively, our findings demonstrated that circCCDC66 contributed to malignant behaviors of OS cells by miR-338-3p/PTP1B pathway, which suggested circCCDC66/miR-338-3p/PTP1B axis might be a potential therapeutic target.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Wen-Tao Yang ◽  
Gen-Hua Li ◽  
Zheng-You Li ◽  
Song Feng ◽  
Xue-Qin Liu ◽  
...  

Background. This study is to explore the effect of corilagin on the proliferation and NF-κB signaling pathway in U251 glioblastoma cells and U251 glioblastoma stem-like cells.Methods. CD133 positive U251 glioblastoma cells were separated by immunomagnetic beads to isolate glioblastoma stem-like cells. U251 cells and stem-like cells were intervened by different corilagin concentrations (0, 25, 50, and 100 μg/mL) for 48 h, respectively. Cell morphology, cell counting kit-8 assay, flow cytometry, dual luciferase reporter assay, and a western blot were used to detect and analyze the cell proliferation and cell cycle and investigate the expression of IKBαprotein in cytoplasm and NF-κB/p65 in nucleus.Results. Corilagin inhibited the cell proliferation of U251 cells and their stem-like cells and the inhibition role was stronger in U251 stem-like cells (P<0.05). The cell cycle was arrested at G2/M phase in the U251 cells following corilagin intervention; the proportion of cells in G2/M phase increased as the concentration of corilagin increased (P<0.05). The U251 stem-like cells were arrested at the S phase following treatment with corilagin; the proportion of cells in the S phase increased as the concentration of corilagin increased (P<0.05). The ratio of dual luciferase activities of U251 stem-like cells was lower than that of U251 cells in the same corilagin concentration. With increasing concentrations of corilagin, the IKBαexpression in cytoplasm of U251 cells and U251 stem-like cells was increased, but the p65 expression in nucleus of U251 cells and U251 stem-like cells was decreased (P<0.05).Conclusion. Corilagin can inhibit the proliferation of glioblastoma cells and glioblastoma stem-like cells; the inhibition on glioblastoma stem-like cell proliferation is stronger than glioblastoma cells. This different result indicates that the effect of corilagin on U251 cells and U251 stem-like cells may have close relationships with mechanism of cell cycle and NF-κB signaling pathway; however, the real antitumor mechanism of corilagin is not yet clear and requires further study.


2020 ◽  
Author(s):  
Pengcheng Li ◽  
Junhui Xing ◽  
Jianwu Jiang ◽  
Xinyu Tian ◽  
Xuemeng Liu ◽  
...  

Abstract Background: Nasopharyngeal carcinoma (NPC) is the most common malignant tumor in the head and neck that is characterized by high local malignant invasion and distant metastasis. miR-18a-5p reportedly plays an important role in tumorigenesis and development. However, little is known about the mechanism underlying miR-18a-5p’s role in NPC.Methods:Quantitative real-time PCR was used to detect the expression of miR-18a-5p in NPC tissues and cell lines. MTT assay and plate clone formation assay were used to detect the effect of miR-18a-5p on NPC cell proliferation. Woundhealing assays and Transwell assays were used to detect the effect of miR-18a-5p on NPC cell invasion and migration. The expressions of epithelialmesenchymal transition (EMT)-related proteins N-cadherin, Vimentin, and E-cadherin were detected by Westernblot. Bioinformatics and dual-luciferase reporter assay were used to detect the targeting interaction between miR-18a-5p and SMAD2. Xenotransplantation and metastasis model were used to detect the effect of miR-18a-5p on NPC growth and metastasis in vivo.Results:miR-18a-5p was highly expressed in NPC tissues and cell lines. Overexpression of miR-18a-5p promotedNPC cell proliferation, invasion, migration, and EMT process, whereas inhibition of miR-18a-5p expression led to the oppositeresults. Results of dual-luciferase reporter assay showed that SMAD2 was the target gene of miR-18a-5p, and SMAD2 could reverse the effect of miR-18a-5p on NPC cell line. Xenotransplantation and metastasis model experiments in nude mice showed that miR-18a-5p promotesNPC growth and metastasis in vivo.Conclusions:Targeting SMAD2 downregulated miR-18a-5p expression, thereby promoting NPC cell proliferation, invasion, migration, and EMT.


Sign in / Sign up

Export Citation Format

Share Document