scholarly journals miR-27b Targets HOXB8 to Inhibit Malignant Behaviors of Osteosarcoma

2019 ◽  
Vol 18 ◽  
pp. 153303381987079
Author(s):  
Yingyong Wu ◽  
Jinyun Peng

MicroRNAs function as either tumor suppressor or oncogene in human cancers. This study aimed to explore the role of miR-27b in osteosarcoma. Expression of miR-27b or homeobox B8 in osteosarcoma cell lines was analyzed by quantitative real-time polymerase chain reaction and Western blot, respectively. Luciferase activity reporter assay and Western blot were conducted to explore the association between miR-27b and homeobox B8. Cell Counting Kit-8, colony formation assay, and wound-healing assay were performed to investigate the role of miR-27b or homeobox B8 on cell proliferation, colony formation, and cell migration. Expression of miR-27b was significantly reduced, while homeobox B8 was increased in osteosarcoma cell lines. In addition, homeobox B8 was validated as a direct target of homeobox B8. Moreover, miR-27b regulates osteosarcoma cell proliferation, colony formation, and migration through targeting homeobox B8. Taken together, our study provides novel insight into the progression of osteosarcoma, and the miR-27b–homeobox B8 axis identified may be developed as therapeutic targets against hepatocellular carcinoma in the future.


2018 ◽  
Vol 50 (6) ◽  
pp. 2249-2259 ◽  
Author(s):  
Xuesong Wang ◽  
Lei Peng ◽  
Xiaojin Gong ◽  
Xiugong Zhang ◽  
Ruifu Sun ◽  
...  

Background/Aims: Increasing evidences suggest that dysregulated expression of miRNAs contributes to the progression of various tumors. However, the underlying function of miR-423-5p in osteosarcoma remains unexplored. Methods: The expression of miR-423-5p and STMN1 were determined in osteosarcoma samples and cell lines via quantitative real-time PCR. Colony formation and Cell Counting Kit-8 (CCK-8) assays were performed to measure cell proliferation ability and transwell analysis was used to detect cell invasion, and dual luciferase reporter assay was perform to analysis the interaction between the miR-423-5p and STMN1. Results: The expression levels of miR-423-5p and STMN1 in the osteosarcoma tissues and cell lines were measured by qRT-PCR. Cell viability was determined using the clone formation and CCK-8 assays. A dual-luciferase reporter and Western blot were performed to stdudy the target gene of miR-423-5p. Here, we showed that miR-423-5p expression was downregulated in osteosarcoma tissues and cell lines. However, the expression of stathmin1 (STMN1) was downregulated in osteosarcoma tissues and cell lines. Moreover, STMN1 expression level was negatively correlated with the miR-423-5p expression in the osteosarcoma tissues. We identified STMN1 was a direct target gene of miR-423-5p in osteosarcoma cell. Overexpression of miR-423-5p inhibited osteosarcoma cell proliferation, colony formation and invasion. Furthermore, we demonstrated that STMN1 was involved in miR-423-5p-mediated cell behavior such as cell proliferation, colony formation and invasion in the osteosarcoma cell. Conclusion: Our present study indicated that miR-423-5p acted as a tumor suppressor gene in osteosarcoma partly through inhibiting STMN1 expression.



2018 ◽  
Vol 51 (3) ◽  
pp. 1364-1375 ◽  
Author(s):  
Dan Fei ◽  
Xiaona Zhang ◽  
Jinxiang Liu ◽  
Long Tan ◽  
Jie Xing ◽  
...  

Background/Aims: Novel long non-coding RNA Fer-1-like protein 4 (FER1L4) has been reported to play crucial regulatory roles in tumor progression. However, its clinical significance and biological role in osteosarcoma (OS) is completely unknown. The aim of the present study was to investigate the role of FER1L4 in OS progression and the underlying mechanism. Methods: We analyzed the expression levels of FER1L4 in tissues of OS patients and cell lines via quantitative RT-PCR (qRT-PCR). The effect of FER1L4 on cell proliferation, colony formation, migration and invasion was analyzed by cell counting kit-8 (CCK-8), colony formation, wound healing and transwell invasion assay, respectively. Novel targets of FER1L4 were selected through a bioinformatics soft and confirmed using a dual-luciferase reporter system and qRT-PCR. To detect the role of FER1L4 in vivo tumorigenesis, tumor xenografts were created. Results: We found that the expression of FER1L4 was significantly downregulated in OS tissues and cell lines; moreover, low expression of FER1L4 was associated with advanced tumor-nude-metastasis (TNM) stage, lymph node metastases, and poor overall survival. Functional assays showed that upregulation of FER1L4 significantly inhibited OS cell proliferation, colony formation, migration, and invasion in vitro, as well as suppressed tumor growth in vivo. Assays performed to determine the underlying mechanism, indicated that FER1L4 interacted directly with miR-18a-5p. Subsequently, we found that FER1L4 significantly increased PTEN expression, a known target of miR-18a-5p, in OS cells. Furthermore, PTEN was found to be down-regulated, and positively correlated with FER1L4 in OS tissues. Conclusion: These findings suggest that FER1L4, acting as a competing endogenous RNA (ceRNA) of miR-18a-5p, exerts its anti-cancer role by modulating the expression of PTEN. Thus, FER1L4 may be a novel target for the prevention and treatment of OS.



2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Shuai Lv ◽  
Meng Guan

Previous literatures have reported the role of human micro RNA-1284 (hsa-miR-1284, in short miR-1284) in diverse cancers. However, its biological function in osteosarcoma pathogenesis remains unknown. In the present study, we investigated the potential role of miR-1284 in osteosarcoma. Expression of miR-1284 and high mobility group box 1 (HMGB1) were examined in 80 tissues obtained from 40 patients. MiR-1284 level was measured in five osteosarcoma cell lines. Relative luciferase activity and HMGB1 expression were examined in MG-63 and U2OS cells transfected with wild-type or mutant 3′-UTR of HMGB1 in the presence of miR-1284 mimics or miR-NC. Cell viability, colony formation, and cell migration were measured in MG-63, U2OS and hFOB 1.19 cells, which were transfected with miR-1284 mimics or miR-NC. In the rescue experiments, recombinant HMGB1 plasmid was transfected into MG-63 and U2OS cells, and cell viability and migration were determined again. Our results indicated that relative level of miR-1284 was lower in tumor tissues compared with its adjacent tissues and it was found suppressed at lower levels in MG-63 and U2OS cell lines. Expression of HMGB1 is significantly elevated in tumor tissues and negatively correlated with miR-1284 expression. MiR-1284 exerted its function by directly binding to 3′-UTR of HMGB1 and regulates expression of HMGB1. The overexpression of miR-1284 inhibited the cell proliferation and migration, and altered the protein expression of epithelial–mesenchymal transition (EMT)-associated genes (E-cadherin, N-cadherin, Vimentin, and Snail), which was reversed by HMGB1 overexpression. In conclusion, miR-1284 can function as a new regulator to inhibit osteosarcoma cell proliferation and migration by targeting HMGB1.



2021 ◽  
Vol 11 (11) ◽  
pp. 2137-2145
Author(s):  
Xuejuan Zhu ◽  
Danqian Lu

Background: Sulfiredoxin (Srx) has been identified to play important roles in the development of various cancers. However, the precise effects and underlying mechanism of Srx on the progression of HCC are far from being fully understood. Materials and Methods: The abundances of Srx in THLE-2 cell and HCC cell lines were determined by western blot and RT-qPCR. Next, SK-Hep-1 cells were transfected with shRNA-Srx or shRNA-NC and treated with TBHQ (an extracellular signal-regulated kinase (ERK) activator) for functional experiments. Then, CCK8 and colony formation assays were used to determine cell proliferation and clone-forming abilities in vitro. Cell migration and invasion were assessed via wound healing and transwell assays. The expression of MMP2, MMP9 and key members in ERK/nuclear factor E2 related factor (Nrf2) signaling pathway was detected by performing western blot analysis. Results: We reported evidence that Srx was frequently up-regulated in HCC cell lines. Srx interference constrained cell proliferation, colony formation rate, migration and invasion of SK-Hep-1 cells. Moreover, mechanistic investigations indicated that Srx interference significantly inhibited the activation of ERK/Nrf2 signaling pathway, and ERK activator TBHQ can reverse the functions of Srx interference in SK-Hep-1 cells. Conclusion: Overall, Downregulation of Srx might impede HCC progression by suppressing ERK/Nrf2 signaling pathway. Findings in the current study reported the functional involvement and molecular mechanism of Srx in HCC, suggesting that Srx might have a potential therapeutic value in HCC treatment.



BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lei Li ◽  
Shuai Zhang ◽  
Hao Li ◽  
Haiyan Chou

Abstract Background Overexpression of fibroblast growth factor receptor 3 (FGFR3) has been linked to tumor progression in many types of cancer. The role of FGFR3 in melanoma remains unclear. In this study, we aimed to uncover the role of FGFR3 in the growth and metastasis of melanoma. Methods FGFR3 knockdown and overexpression strategies were employed to investigate the effects of FGFR3 on colony formation, cell apoptosis, proliferation, migration, and in vitro invasion, along with the growth and metastasis of melanoma in a xenografts mouse model. The protein expression levels of extracellular signal-regulated kinase (ERK), protein kinase B (AKT), epidermal growth factor receptor (EGFR), and epithelial-mesenchymal transition (EMT) markers were determined by Western blot analysis. Results The mRNA expression of FGFR3 was higher in melanoma tissues than normal healthy tissues. FGFR3 expression in cutaneous malignant melanoma (CMM) tissues was positively correlated with the Breslow thickness and lymph node metastasis. In A357 cells, knockdown of the FGFR3 gene decreased the colony formation ability, cell proliferation, invasion, and migration, but increased the caspase 3 activity and the apoptosis rate; overexpression of FGFR3 increased the colony formation ability, cell proliferation, invasion, and migration, but decreased the caspase 3 activity and apoptosis rates. FGFR3 knockdown also upregulated E-cadherin, downregulated N-cadherin and vimentin, and decreased the phosphorylation levels of ERK, AKT, and EGFR. In the MCC xenografts mice, knockdown of FGFR3 decreased tumor growth and metastasis. Conclusions FGFR3, which is highly expressed in CMM tissues, is correlated with increased Breslow thickness and lymph node metastasis. FGFR3 promotes melanoma growth, metastasis, and EMT behaviors, likely by affecting the phosphorylation levels of ERK, AKT, and EGFR.



2020 ◽  
Author(s):  
Peihong Shao ◽  
Chengshi Wei ◽  
Yun Wang

Abstract Background: In this study, we planned to investigate the function and potential mechanisms of Alpha-1,3-mannosyltransferase (ALG3) in oral squamous cell carcinoma (OSCC). Methods: Data from The Cancer Genome Atlas (TCGA) was used to analyze ALG3 expression and its effect on the prognosis of patients with OSCC. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was applied to explore the signaling pathways related to ALG3. In OSCC cells, ALG3 expression was measured by qPCR and western blot. Cell counting kit-8, colony formation, and transwell assays were implemented to detect the effects of ALG3 on the malignant biological properties OSCC cells. The expression of key proteins related to CDK-Cyclin pathway was detected by western blot. Results: The expression of ALG3 in OSCC samples was higher than that of the control samples, and the increase of ALG3 expression was related to unfavorable prognosis of OSCC patients. Additionally, the elevated expression of ALG3 was associated with pathological stage, lymph node metastasis and primary lesion in OSCC patients. ALG3 depletion blocked the growth, colony formation, invasion and migration of OSCC cells, while over-expression ALG3 reversed these phenomena. Moreover, exhaustion of ALG3 resulted in decreased expression of MCM7, CCNB2, CDK1 and PCNA, while these phenomena were inversed after ALG3 up-regulation. Conclusions: The enhancement of ALG3 expression promoted the aggressive biological behaviors of OSCC cells probably by promoting CDK-Cyclin pathway.



2021 ◽  
Vol 11 (5) ◽  
pp. 896-902
Author(s):  
Jinwei Zhao ◽  
Ling Li

MicroRNAs have been reported to be associated with the initiation and progression of rheumatoid arthritis (RA). miR-216a-5p, one of the miRNAs, is involved in cancer cell proliferation, invasion and migration. However, the role of miR-216a-5p in RA remains to be explored. The expressions of miR-216a-5p and zinc finger and BTB domain-containing protein 2 (ZBTB2) in fibroblast-like synoviocytes (FLS) of RA or healthy controls were detected by qRT-PCR and western blot analysis. Transfection of overexpressed and silenced miR-216a-5p were performed to explore the functional role of miR-216a-5p in RA-FLS. Cell Counting Kit-8 (CCK-8) assay and transwell assay were employed to assess cell proliferation and cell invasion, respectively. Moreover, luciferase reporter assay was executed to verify the combination of miR-216a-5p and ZBTB2. The results showed that miR-216a-5p expression in RA-FLS was downregulated than healthy controls. Overexpres-sion of miR-216a-5p inhibited RA-FLS cell proliferation, invasion and migration, while miR-216a-5p silencing revealed the opposite results. In addition, ZBTB2 was identified to be a direct target of miR-216a-5p in RA-FLS and its expression was higher than that in healthy controls. Rescue experiments revealed that ZBTB2 overexpression reversed the effects of miR-216a-5p on the proliferation, invasion and migration of RA-FLS. These data indicated the suppressive role of miR-216a-5p in RA-FLS via the regulation of ZBTB2, suggesting that miR-216a-5p and ZBTB2 may be the new targets for the treatment of RA.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhidong Zhao ◽  
Xianju Qin

Abstract Colon adenocarcinoma (COAD) is the most common type of gastrointestinal cancer and is still the third leading cause of cancer-related mortality worldwide. Therefore, finding new and promising drugs to eradicate cancer may be a feasible method to treat COAD patients. Cys2-His2 zinc finger proteins (ZFPs) is one of the largest transcription factor family and many of them are highly involved in regulation of cell differentiation, proliferation, apoptosis, and neoplastic transformation. In this study, we identified a tumor-inhibiting factor, ZNF549, which expressed lowly in COAD tissues and COAD cell lines (HT29, HCT116, SW480, LoVo, and SW620). Overexpression of ZNF549 inhibit the ability of COAD cell proliferation and migration. On the contrary, decreasing the ZNF549 expression level promote the ability of COAD cell proliferation and migration. Through bioinformatics analysis, we found that ZNF549 was a potential target of hsa-miR-708-5p (miR-708-5p). Furthermore, we verified the possibility of miR-708-5p targeting the ZNF549 gene, and miR-708-5p inhibited the expression of ZNF549 by luciferase reporter assays, qRT-PCR and western blot assays. Moreover, the relationship between miR-708-5p and phosphatidylinositol 3-kinase/AKt (PI3K/AKt) signal pathway was elucidated. Overexpression and inhibition of miR-708-5p resulted in increased and decreased expression of p-AKt and p-PI3K in HCT116 cells, respectively. RT-qPCR and western blot assays results demonstrated that miR-708-5p regulated COAD cells development by promoting the process of Epithelial-mesenchymal transition (EMT) through PI3K/AKt signaling pathway. In summary, our findings demonstrated that ZNF549, the target gene of miR-708-5p, functions as a tumor suppressor to inhibit COAD cell lines proliferation and migration through regulate the PI3K/AKt signal pathway.



2021 ◽  
Author(s):  
Jie Hua ◽  
Qingcai Meng ◽  
Chen Liang ◽  
Miaoyan Wei ◽  
Jiang Liu ◽  
...  

Abstract Background: The aim of this study was to explore the role of leucine-rich α2-glycoprotein 1 (LRG1) in the biological function and prognosis of pancreatic cancer.Methods: LRG1 was detected in serum and tissue specimens from patients with pancreatic cancer by enzyme-linked immunosorbent assay (ELISA), qRT-PCR, western blotting, and immunohistochemical (IHC) analysis. LRG1-overexpressing and LRG1-knockdown cell lines were established with lentiviral vectors containing LRG1-overexpression and shRNA plasmids, respectively. Colony formation, Cell Counting Kit-8 (CCK-8), wound healing, Transwell migration, and in vivo tumorigenicity assays were conducted to assess proliferation and migration of the pancreatic cancer cells. RNA sequencing was performed to identify potential downstream molecules of LRG1.Results: Serum LRG1 levels were significantly elevated in patients with pancreatic cancer compared with healthy controls. The mRNA and protein levels of LRG1 were higher in cancer tissues than in adjacent normal tissues. High LRG1 expression was significantly associated with shorter overall survival and found to be an independent risk factor for poor prognosis. Additionally, LRG1 dramatically promoted cell proliferation and migration in vitro and accelerated tumor growth in vivo. By RNA sequencing, we identified Deltex (DTX)-3-like E3 ubiquitin ligase (DTX3L) as a potential downstream molecule of LRG1. Further validation experiments confirmed a positive correlation between LRG1 and DTX3L.Conclusions: LRG1 is a valuable prognostic marker for pancreatic cancer that plays a crucial role in cell proliferation and migration. Targeting LRG1 or the downstream molecule DTX3L provides a novel strategy for the treatment of pancreatic cancer.



2019 ◽  
Vol 52 (1) ◽  
Author(s):  
Wei Cao ◽  
Youping Feng

Abstract Background Long noncoding RNAs (lncRNAs) have been reported to be associated with dermis process during burn wound healing. This study aimed to investigate the role of lncRNA X-inactive specific transcript (XIST) in human skin fibroblasts (HSF) and extracellular matrix (ECM) as well as the regulatory network of XIST/microRNA-29b-3p (miR-29b-3p)/collagen 1 alpha 1 (COL1A1). Methods The wound samples were collected from 25 patients with deep partial thickness burn at day 5 after burn. The thermal injured model was established using HSF cells. The expressions of XIST, miR-29b-3p and COL1A1 were measured by quantitative real-time polymerase chain reaction and western blot. ECM synthesis, cell proliferation and migration were detected by western blot, cell counting kit-8 and trans-well assays, respectively. The interaction between miR-29b-3p and XIST or COL1A1 was explored by bioinformatics analysis and luciferase reporter assay. Results The expressions of XIST and COL1A1 were enhanced but miR-29b-3p expression was decreased after thermal injury. XIST overexpression promoted ECM synthesis, cell proliferation and migration in thermal injured HSF cells. However, XIST knockdown played an opposite effect. miR-29b-3p overexpression inhibited ECM synthesis, cell proliferation and migration, which was reversed by XIST. COL1A1 silence suppressed ECM synthesis, cell proliferation and migration by miR-29b-3p targeting. Moreover, COL1A1 up-regulation weakened the effect of XIST silence on ECM synthesis and HSF cell function. Conclusion XIST promoted ECM synthesis, cell proliferation and migration by sponging miR-29b-3p and targeting COL1A1 in HSF cells after thermal injury, indicating the promoting role of XIST in wound healing.



Sign in / Sign up

Export Citation Format

Share Document