scholarly journals Acute Blockade of PACAP-Dependent Activity in the Ventromedial Nucleus of the Hypothalamus Disrupts Leptin-Induced Behavioral and Molecular Changes in Rats

2019 ◽  
Vol 110 (3-4) ◽  
pp. 271-281
Author(s):  
Matthew M. Hurley ◽  
Eden M. Anderson ◽  
Christopher Chen ◽  
Brian Maunze ◽  
Evan M. Hess ◽  
...  

Leptin signaling pathways, stemming primarily from the hypothalamus, are necessary for maintaining normal energy homeostasis and body weight. In both rodents and humans, dysregulation of leptin signaling leads to morbid obesity and diabetes. Since leptin resistance is considered a primary factor underlying obesity, understanding the regulation of leptin signaling could lead to therapeutic tools and provide insights into the causality of obesity. While leptin actions in some hypothalamic regions such as the arcuate nuclei have been characterized, less is known about leptin activity in the hypothalamic ventromedial nuclei (VMN). Recently, pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to reduce feeding behavior and alter metabolism when administered into the VMN in a pattern similar to that of leptin. In the current study, we examined whether leptin and PACAP actions in the VMN share overlapping pathways in the regulation of energy balance. Interestingly, PACAP administration into the VMN increased STAT3 phosphorylation and SOCS3 mRNA expression, both of which are hallmarks of leptin receptor activation. In addition, BDNF mRNA expression in the VMN was increased by both leptin and PACAP administration. Moreover, antagonizing PACAP receptors fully reversed the behavioral and cellular effects of leptin injections into the VMN. Electrophysiological studies further illustrated that leptin-induced effects on VMN neurons were blocked by antagonizing PACAP receptors. We conclude that leptin dependency on PACAP signaling in the VMN suggests a potential common signaling cascade, allowing a tonically and systemically secreted neuropeptide to be more precisely regulated by central neuropeptides.

2008 ◽  
Vol 295 (6) ◽  
pp. R2059-R2066 ◽  
Author(s):  
A. D. Laposky ◽  
M. A. Bradley ◽  
D. L. Williams ◽  
J. Bass ◽  
F. W. Turek

Recent epidemiological and clinical studies indicate that the control of sleep-wake states may be an important factor in the regulation of energy metabolism. Leptin is a peripherally synthesized hormone that has critical signaling properties in the brain for the control of long-term energy homeostasis. In this study, we examined the hypothesis that leptin signaling exerts a role in sleep-wake regulation and that leptin may represent an important mechanistic link in the coordination of sleep-wake states and metabolism. Sleep-wake patterns were recorded in a genetic mouse model of obesity and diabetes, the db/db mouse, which harbors a mutation in a particular isoform of the leptin receptor (long form, LRb). We found that db/db mice exhibit a variety of alterations in sleep regulation, including an increase in overall sleep time, a dramatic increase in sleep fragmentation, attenuated diurnal rhythmicity in rapid eye movement sleep and non-rapid eye movement EEG delta power (a measure of sleep homeostatic drive), and a decrease in the compensatory response to acute (i.e., 6 h) sleep deprivation. The db/db mice also generated low amounts of locomotor activity and a reduction in the diurnal rhythm of activity. These results indicate that impaired leptin signaling has deleterious effects on the regulation of sleep amount, sleep architecture, and temporal consolidation of these arousal states. In summary, leptin may represent an important molecular component in the integration of sleep, circadian rhythms, and energy metabolism.


2009 ◽  
Vol 30 (7) ◽  
pp. 1650-1659 ◽  
Author(s):  
Jia You ◽  
Yue Yu ◽  
Lei Jiang ◽  
Wenxia Li ◽  
Xinxin Yu ◽  
...  

ABSTRACT Leptin regulates energy homeostasis through central activation of multiple signaling pathways mediated by Ob-Rb, the long form of leptin receptor. Leptin resistance underlies the pathogenic development of obesity, which is closely associated with environmental factors. To further understand the physiological function of leptin signaling mechanisms, we generated a knock-in line of mice (Y985F) expressing a mutant Ob-Rb with a phenylalanine substitution for Tyr985, one of the three intracellular tyrosines that mediate leptin's signaling actions. Surprisingly, whereas young homozygous Y985F animals were slightly leaner, they exhibit adult-onset or diet-induced obesity. Importantly, both age-dependent and diet-induced deterioration of energy balance was paralleled with pronounced leptin resistance, which was largely attributable to attenuation of leptin-responsive hypothalamic STAT3 activation as well as prominently elevated expression of hypothalamic SOCS3, a key negative regulator of leptin signaling. Thus, these results unmask distinct binary roles for Try985-mediated signaling in energy metabolism, acting as an age/diet-dependent regulatory switch to counteract age-associated or diet-induced obesity.


2013 ◽  
Vol 289 (3) ◽  
pp. 1779-1787 ◽  
Author(s):  
Qian Zhang ◽  
Bin Liu ◽  
Ying Cheng ◽  
Qingshu Meng ◽  
Tingting Xia ◽  
...  

Leptin signaling in the hypothalamus is crucial in energy homeostasis. We have previously shown that dietary deprivation of the essential amino acid leucine in mice stimulates fat loss by increasing energy expenditure. The involvement of leptin signaling in this regulation, however, has not been reported. Here, we show that leucine deprivation promotes leptin signaling in mice maintained on an otherwise normal diet and restores leptin responses in mice maintained on a high fat diet, a regimen known to induce leptin resistance. In addition, we found that leucine deprivation stimulated energy expenditure, and fat loss was largely blocked in db/db mice homozygous for a mutation in leptin receptor and a knock-in mouse line Y3F with abrogation of leptin receptor Tyr1138-mediated signal transducer and activator transcript 3 signaling. Overall, our studies describe a novel link between hypothalamic leptin signaling and stimulation of energy expenditure under leucine deprivation.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Huimin Liu ◽  
Tianxin Du ◽  
Chen Li ◽  
Guoqing Yang

AbstractMechanism exploitation of energy homeostasis is urgently required because of the worldwide prevailing of obesity-related metabolic disorders in human being. Although it is well known that leptin plays a central role in regulating energy balance by suppressing food intake and promoting energy expenditure, the existence of leptin resistance in majority of obese individuals hampers the utilization of leptin therapy against these disorders. However, the mechanism of leptin resistance is largely unknown in spite of the globally enormous endeavors. Current theories to interpret leptin resistance include the impairment of leptin transport, attenuation of leptin signaling, chronic inflammation, ER tress, deficiency of autophagy, as well as leptin itself. Leptin-activated leptin receptor (LepRb) signals in hypothalamus via several pathways, in which JAK2-STAT3 pathway, the most extensively investigated one, is considered to mediate the major action of leptin in energy regulation. Upon leptin stimulation the phosphorylation of STAT3 is one of the key events in JAK2-STAT3 pathway, followed by the dimerization and nuclear translocation of this molecule. Phosphorylated STAT3 (p-STAT3), as a transcription factor, binds to and regulates its target gene such as POMC gene, playing the physiological function of leptin. Regarding POMC gene in hypothalamus however little is known about the detail of its interaction with STAT3. Moreover the status of p-STAT3 and its significance in hypothalamus of DIO mice needs to be well elucidated. This review comprehends literatures on leptin and leptin resistance and especially discusses what STAT3 phosphorylation would contribute to central leptin resistance.


2009 ◽  
Vol 297 (6) ◽  
pp. E1247-E1259 ◽  
Author(s):  
David L. Morris ◽  
Liangyou Rui

The brain controls energy homeostasis and body weight by integrating various metabolic signals. Leptin, an adipose-derived hormone, conveys critical information about peripheral energy storage and availability to the brain. Leptin decreases body weight by both suppressing appetite and promoting energy expenditure. Leptin directly targets hypothalamic neurons, including AgRP and POMC neurons. These leptin-responsive neurons widely connect to other neurons in the brain, forming a sophisticated neurocircuitry that controls energy intake and expenditure. The anorexigenic actions of leptin are mediated by LEPRb, the long form of the leptin receptor, in the hypothalamus. LEPRb activates both JAK2-dependent and -independent pathways, including the STAT3, PI 3-kinase, MAPK, AMPK, and mTOR pathways. These pathways act coordinately to form a network that fully mediates leptin response. LEPRb signaling is regulated by both positive (e.g., SH2B1) and negative (e.g., SOCS3 and PTP1B) regulators and by endoplasmic reticulum stress. Leptin resistance, a primary risk factor for obesity, likely results from impairment in leptin transport, LEPRb signaling, and/or the neurocircuitry of energy balance.


2018 ◽  
Vol 10 (5) ◽  
pp. 402-410 ◽  
Author(s):  
Qun Wei ◽  
Yi-Feng Gu ◽  
Qing-Jun Zhang ◽  
Helena Yu ◽  
Yan Peng ◽  
...  

Abstract Leptin receptor (LepRb) signaling pathway in the hypothalamus of the forebrain controls food intake and energy expenditure in response to an altered energy state. Defects in the LepRb signaling pathway can result in leptin-resistance and obesity. Leucine zipper transcription factor like 1 (Lztfl1)/BBS17 is a member of the Bardet–Biedl syndrome (BBS) gene family. Human BBS patients have a wide range of pathologies including obesity. The cellular and molecular mechanisms underlying Lztfl1-regulated obesity are unknown. Here, we generated Lztfl1f/f mouse model in which Lztfl1 can be deleted globally and in tissue-specific manner. Global Lztfl1 deficiency resulted in pleiotropic phenotypes including obesity. Lztfl1−/− mice are hyperphagic and showed similar energy expenditure as WT littermates. The obese phenotype of Lztfl1−/− mice is caused by the loss of Lztfl1 in the brain but not in the adipocytes. Lztfl1−/− mice are leptin-resistant. Inactivation of Lztfl1 abolished phosphorylation of Stat3 in the LepRb signaling pathway in the hypothalamus upon leptin stimulation. Deletion of Lztfl1 had no effect on LepRb membrane localization. Furthermore, we observed that Lztfl1−/− mouse embryonic fibroblasts (MEFs) have significantly longer cilia than WT MEFs. We identified several proteins that potentially interact with Lztfl1. As these proteins are known to be involved in regulation of actin/cytoskeleton dynamics, we suggest that Lztfl1 may regulate leptin signaling and ciliary structure via these proteins. Our study identified Lztfl1 as a novel player in the LepRb signaling pathway in the hypothalamus that controls energy homeostasis.


2018 ◽  
Vol 108 (2) ◽  
pp. 132-141
Author(s):  
Clara Roujeau ◽  
Ralf Jockers ◽  
Julie Dam

Endospanin 1 (Endo1), a protein encoded in humans by the same gene than the leptin receptor (ObR), and increased by diet-induced obesity, is an important regulator of ObR trafficking and cell surface exposure, determining leptin signaling strength. Defective intracellular trafficking of the leptin receptor to the neuronal plasma membrane has been proposed as a mechanism underlying the development of leptin resistance observed in human obesity. More recently, Endo1 has emerged as a mediator of “selective leptin resistance.” The underlying mechanisms of the latter are not completely understood, but the possibility of differential activation of leptin signaling pathways was suggested among others. In this respect, the expression level of Endo1 is crucial for the appropriate balance between different leptin signaling pathways and leptin functions in the hypothalamus and is likely participating in selective leptin resistance for the control of energy and glucose homeostasis.


2019 ◽  
Vol 316 (5) ◽  
pp. C641-C648 ◽  
Author(s):  
Toru Hosoi ◽  
Ayaka Kuwamura ◽  
Mina Thon ◽  
Kyoji Tsuchio ◽  
Amer Ali Abd El-Hafeez ◽  
...  

Insensitivity to the antiobesity hormone, leptin, has been suggested to be involved in the pathogenesis of obesity. However, the pathological mechanisms underlying the development of leptin resistance are not well-understood. This study aimed to examine the pathological mechanisms of leptin resistance in obesity. In the present study, we found that 4-hydroxy-2-nonenal (4-HNE), an aldehyde, may be involved in the development of leptin resistance. The SH-SY5Y-Ob-Rb human neuroblastoma cell line, transfected to express the Ob-Rb leptin receptor stably, was treated with 4-HNE, and leptin-induced signal transduction was analyzed. We found that 4-HNE dose- and time-dependently inhibited leptin-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation, a major antiobesity signal of leptin. On the other hand, 4-HNE did not affect tyrosine phosphorylation of broad cellular proteins, suggesting that the inhibitory effect may be selective to leptin signaling. Mechanistically, 4-HNE induced the eukaryotic initiation factor 2α-CCAAT/enhancer-binding protein homologous protein arm of endoplasmic reticulum stress signaling, which may be involved in the pathogenesis of leptin resistance. Overall, these results suggest that 4-HNE may partly affect endoplasmic reticulum stress-induced unfolded protein response signaling and may be involved in the pathogenesis of leptin resistance.


2020 ◽  
Vol 21 (12) ◽  
pp. 4238
Author(s):  
Dorota Anna Zieba ◽  
Weronika Biernat ◽  
Malgorzata Szczesna ◽  
Katarzyna Kirsz ◽  
Justyna Barć ◽  
...  

Both long-term undernutrition and overnutrition disturb metabolic balance, which is mediated partially by the action of two adipokines, leptin and resistin (RSTN). In this study, we manipulated the diet of ewes to produce either a thin (lean) or fat (fat) body condition and investigated how RSTN affects endocrine and metabolic status under different leptin concentrations. Twenty ewes were distributed into four groups (n = 5): the lean and fat groups were administered with saline (Lean and Fat), while the Lean-R (Lean-Resistin treated) and Fat-R (Fat-Resistin treated) groups received recombinant bovine resistin. Plasma was assayed for LH, FSH, PRL, RSTN, leptin, GH, glucose, insulin, total cholesterol, nonesterified fatty acid (NEFA), high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol and triglycerides. Expression levels of a suppressor of cytokine signaling (SOCS-3) and the long form of the leptin receptor (LRb) were determined in selected brain regions, such as the anterior pituitary, hypothalamic arcuate nucleus, preoptic area and ventro- and dorsomedial nuclei. The results indicate long-term alterations in body weight affect RSTN-mediated effects on metabolic and reproductive hormones concentrations and the expression of leptin signaling components: LRb and SOCS-3. This may be an adaptive mechanism to long-term changes in adiposity during the state of long-day leptin resistance.


Endocrinology ◽  
2007 ◽  
Vol 149 (3) ◽  
pp. 1121-1128 ◽  
Author(s):  
Anantha S. Metlakunta ◽  
Maitrayee Sahu ◽  
Abhiram Sahu

Phosphatidylinositol 3-kinase (PI3K) pathway of leptin signaling plays an important role in transducing leptin action in the hypothalamus. Obesity is usually associated with resistance to the effect of leptin on food intake and energy homeostasis. Although central leptin resistance is thought to be involved in the development of diet-induced obesity (DIO), the mechanism behind this phenomenon is not clearly understood. To determine whether DIO impairs the effect of leptin on hypothalamic PI3K signaling, we fed 4-wk-old FVB/N mice a high-fat diet (HFD) or low-fat diet (LFD) for 19 wk. HFD-fed mice developed DIO in association with hyperleptinemia, hyperinsulinemia, and impaired glucose and insulin tolerance. Leptin (ip) significantly increased hypothalamic PI3K activity and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) levels in LFD-fed mice but not in DIO mice. Immunocytochemical study confirmed impaired p-STAT3 activation in various hypothalamic areas, including the arcuate nucleus. We next tested whether both PI3K and STAT3 pathways of leptin signaling were impaired during the early period of DIO. Leptin failed to increase PI3K activity in DIO mice that were on a HFD for 4 wk. However, leptin-induced p-STAT3 activation in the hypothalamus measured by Western blotting and immunocytochemistry remained comparable between LFD- and HFD-fed mice. These results suggest that the PI3K pathway but not the STAT3 pathway of leptin signaling is impaired during the development of DIO in FVB/N mice. Thus, a defective PI3K pathway of leptin signaling in the hypothalamus may be one of the mechanisms of central leptin resistance and DIO.


Sign in / Sign up

Export Citation Format

Share Document