scholarly journals Investigation of ex vivo Skin Penetration of Coenzyme Q10 from Microemulsions and Hydrophilic Cream

2020 ◽  
pp. 1-7
Author(s):  
Efrem N. Tessema ◽  
Konstanze Bosse ◽  
Johannes Wohlrab ◽  
Yahya Mrestani ◽  
Reinhard H.H. Neubert

<b><i>Introduction:</i></b> Coenzyme Q10 (CoQ10) has been widely used in topical and cosmeceutical products due to its cutaneous antioxidant and energizer effects. CoQ10 is found in a higher concentration in the epidermis compared to dermis. The epidermal level of CoQ10 can be reduced due to several factors such as skin UV irradiation and photoaging. Various dermal nano-formulations have been investigated to overcome the skin barrier and enhance the poor penetration of CoQ10. The nanocarriers are designed to target and concentrate the CoQ10 in the viable epidermis. Most of these studies, however, failed to show the depth and extent of penetration of CoQ10 from the various carrier systems. <b><i>Objective:</i></b> The distribution of CoQ10 across the various skin layers has to be shown using skin slices representing the different skin layers. <b><i>Methods:</i></b> To realize this objective, a sensitive and selective HPLC method was developed and validated for the quantification of CoQ10 in the different skin slices. The method applicability to skin penetration (using excised human skin) as well as stability studies was investigated using CoQ10-loaded lecithin-based microemulsion (ME) and hydrophilic cream formulations. <b><i>Results:</i></b> It could be shown that the highest concentration of CoQ10 in the viable epidermis, the target skin layer for CoQ10, was observed after application of the CoQ10 in the hydrophilic cream. This cream contains 10% of 2-ethylhexyl laurate which works obviously as a penetration enhancer for CoQ10. In contrast, the penetration of CoQ10 was lower from the ME. Just in the deeper dermis, a certain amount of CoQ10 could be detected. <b><i>Conclusions:</i></b> The HPLC method quantified the trace quantities of the CoQ10 distributed across the various skin layers and, hence, can be used to investigate the skin penetration of CoQ10 from various dermal standard and nano-formulations.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 394 ◽  
Author(s):  
Fiorenza Rancan ◽  
Hildburg Volkmann ◽  
Michael Giulbudagian ◽  
Fabian Schumacher ◽  
Jessica Isolde Stanko ◽  
...  

Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions.



Author(s):  
Fenita Shoviantari ◽  
Tristiana Erawati ◽  
Widji Soeratri

Abstract Background Coenzyme Q10 is a fat-soluble antioxidant that can help to prevent collagen and elastin damage and avoid wrinkles. Coenzyme Q10 has several disadvantages to be formulated in topical dosage forms, such as low water solubility and large molecular weight. These make coenzyme Q10 retained in the stratum corneum and cause low skin penetration, so proper formulation is required to get products that can penetrate the skin layer. A nanostructured lipid carrier (NLC) consists of a matrix of solid lipids and liquid lipids in a certain amount with nanoparticle size; it may help increase the penetration of active ingredients. Methods For the antiaging activity test, mice were grouped into four treatment groups and killed on the 14th day; then the back of the skin was stained with Masson trichrome staining. For the irritation test, the mice were grouped into three groups and killed after 24 h; then the back of the mice was stained with hematoxylin-eosin staining. Results The number of fibroblasts in mice with NLC coenzyme Q10 is highest from all test groups. The irritation test results after 24 h of application preparation showed that NLC coenzyme Q10 did not irritate the skin of the back of male mice. Conclusions One percent coenzyme Q10 loaded in NLC induced the number of fibroblast cells in the mice model and showed no irritability effect in histopathology preparations.





2011 ◽  
Vol 194-196 ◽  
pp. 549-553
Author(s):  
Nanthida Wonglertnirant ◽  
Tanasait Ngawhirunpat ◽  
Praneet Opanasopit ◽  
Hiroaki Todo ◽  
Kenji Sugibayashi

Delivery of drugs through skin is obstructed by the excellent barrier properties of the outermost skin layer, the stratum corneum (SC). A strategy employing microneedles have recently emerged as a minimally invasive device for disrupting the SC structure and creating holes for molecules to pass through. Hollow-typed microneedles permit drug delivery which can be modulated over time via active delivery controlled by hand or pump. In this study, the potential of hollow microneedle for overcoming the outermost skin barrier and facilitating drug delivery into skin was investigated. Fluorescein isothiocyanate (FITC)-dextrans (4.3 kDa), FD-4, was used as a model large molecular compound. The effects of injection volume and formulation on drug release behavior from skin were determined. FD-4 was favorably loaded into the lower epidermis as well as the superficial dermis of the skin by a hollow microneedle. The release profiles of FD-4 were analyzed by Higuchi model based on Fick’s law of diffusion. The higher the volume of FD-4 solution injected, the faster the FD-4 release rate from skin. Liposome formulation exhibited no difference on drug release profiles compared with the solution. The results provide information for designing an effective hollow microneedles system.



Author(s):  
Neeraj Kumar ◽  
Balraj Saini ◽  
Rajwinder Kaur

The development of biocompatible ionic liquids is needed in order to explore their vastly underutilized pharmaceutical potential. US10912834 patent discloses ionic liquids comprising macromolecular biological anions and alkylated cations, which provides enhanced dermal delivery and cell internalization of the large biological anions. The studies of ex vivo permeation through excised pig skin indicated significantly higher skin penetration of percent dose and enhanced drug internalization was achieved using these ionic liquids. Although, the patent advances an infant field of biological macromolecule-based ionic liquids, the evaluation of these claimed ionic liquids relies only on the in vivo cytotoxicity data and ex vivo skin permeation behavior. Exhaustive studies, including dermatokinetic evaluation and long-term animal toxicity experiments, should be performed in order to unravel the potential of the aforementioned ionic liquids.



2021 ◽  
Vol 10 (2) ◽  
pp. 181
Author(s):  
Vahid Alimardani ◽  
Samira Sadat Abolmaali ◽  
Gholamhossein Yousefi ◽  
Zahra Rahiminezhad ◽  
Mehdi Abedi ◽  
...  

Organic and inorganic nanoparticles (NPs) have shown promising outcomes in transdermal drug delivery. NPs can not only enhance the skin penetration of small/biomacromolecule therapeutic agents but can also impart control over drug release or target impaired tissue. Thanks to their unique optical, photothermal, and superparamagnetic features, NPs have been also utilized for the treatment of skin disorders, imaging, and biosensing applications. Despite the widespread transdermal applications of NPs, their delivery across the stratum corneum, which is the main skin barrier, has remained challenging. Microneedle array (MN) technology has recently revealed promising outcomes in the delivery of various formulations, especially NPs to deliver both hydrophilic and hydrophobic therapeutic agents. The present work reviews the advancements in the application of MNs and NPs for an effective transdermal delivery of a wide range of therapeutics in cancer chemotherapy and immunotherapy, photothermal and photodynamic therapy, peptide/protein vaccination, and the gene therapy of various diseases. In addition, this paper provides an overall insight on MNs’ challenges and summarizes the recent achievements in clinical trials with future outlooks on the transdermal delivery of a wide range of nanomedicines.



Author(s):  
Ghada M. El-Zaafarany ◽  
Rasha T.A. Abdel-Aziz ◽  
Mahmoud Hamdy Ahmed Montaser ◽  
Maha Nasr


2021 ◽  
Author(s):  
Awais Abbas ◽  
Sadaf Sarfraz ◽  
Umer Younas ◽  
Dr Muhammad Pervaiz Bhatti ◽  
Shahid Hussain ◽  
...  


2021 ◽  
Vol 1 (2) ◽  
pp. 023-037
Author(s):  
Shailaja D ◽  
Latha K ◽  
Manasa D ◽  
Shirisha A ◽  
Padmavathi R ◽  
...  

Proniosomal technology is a novel solution for poorly soluble drugs. Proniosomes are water-soluble carrier particles which are coated with non-ionic surfactants. Proniosomal gels were prepared by coacervation phase separation method using non-ionic surfactants, lipid carriers and cholesterol as a membrane stabilizer. FTIR compatibility studies revealed that the drug and excipients were compatible. All formulations were evaluated for pH, drug content, extrudability, spreadability, viscosity, in-vitro, ex-vivo, skin irritation and stability studies. Among formulations prepared, F80H1 has shown higher % EE (83.02) and least diffusion through dialysis membrane i.e., 17.68%. With ex-vivo studies, F80H1 formulation has shown highest skin deposition and lower flux of sertaconazole nitrate through the rat skin. F80H1 was selected as final optimized formulation. F80H1 exhibited good stability and SEM studies revealed that the vesicles were spherical in shape. The optimized formulation was found to follow zero order release kinetics and korsmeyer-peppas release mechanism. F80H1 found to be non-irritant and stable from skin irritation and stability studies.



2021 ◽  
Vol 20 (4) ◽  
pp. 23s-28s
Author(s):  
Rebecca Barresi ◽  
Emily Chen ◽  
I-Chien Liao ◽  
Xue Liu ◽  
Nada Baalbaki ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document