Reciprocal Antagonism between MicroRNA-138 and SIRT1 and Its Implications for the Angiogenesis of Endothelial Cells

2021 ◽  
pp. 1-16
Author(s):  
Shangyu Wang ◽  
Zengwu Shao ◽  
Xin Tang ◽  
Kaijie Wang ◽  
Jinping Zhao ◽  
...  

MicroRNAs and sirtuins are important epigenetic regulators of gene expression and both contribute significantly to postnatal vascular development. However, the crosstalk between miRNAs and sirtuins in the modulation of angiogenesis has rarely been discussed. Here, we investigated the interactions between miR-138 and sirtuins in the process of angiogenesis. We found that overexpression of miR-138 markedly suppressed the proliferation, migration, and tube-forming capacities of the endothelial cells. And, miR-138 inhibitor-treated endothelial cells showed a reversed phenotype. Furthermore, miR-138 plays a negative role in vascular development in vivo. Western blot and qPCR assays demonstrated that SIRT1 was silenced by miR-138, and a luciferase reporter assay showed that miR-138 bound to the 3′-UTR of SIRT1. The re-expression of SIRT1 alleviated miR-138-mediated suppression of angiogenesis. Furthermore, silencing SIRT1 could boost the level of miR-138. And, upon miR-138 inhibitor treatment, SIRT1 silencing no longer reduced the angiogenic ability of endothelial cells significantly. These results demonstrated that the circuitry involving miR-138 and SIRT1 may participate in vascular homeostasis and also offered the possibility of identifying a new approach in the treatment of angiogenic diseases.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Teng Ma ◽  
Yueqiu Chen ◽  
Yihuan Chen ◽  
Qingyou Meng ◽  
Jiacheng Sun ◽  
...  

Background. To cure ischemic diseases, angiogenesis needs to be improved by various strategies in ischemic area. Considering that microRNA-132 (miR-132) regulates endothelial cell behavior during angiogenesis and the safe and efficacious delivery of microRNAs in vivo is rarely achieved, an ideal vehicle for miR-132 delivery could bring the promise for ischemic diseases. As a natural carrier of biological molecules, exosomes are more and more developed as an ideal vehicle for miRNA transfer. Meanwhile, mesenchymal stem cells could release large amounts of exosomes. Thus, this study aimed to investigate whether MSC-derived exosomes can be used for miR-132 delivery in the treatment of myocardial ischemia. Methods. MSC-derived exosomes were electroporated with miR-132 mimics and inhibitors. After electroporation, miR-132 exosomes were labelled with DiI and added to HUVECs. Internalization of DiI-labelled exosomes was examined by fluorescent microscopy. Expression levels of miR-132 in exosomes and HUVECs were quantified by real-time PCR. The mRNA levels of miR-132 target gene RASA1 in HUVECs were quantified by real-time PCR. Luciferase reporter assay was performed to examine the targeting relationship between miR-132 and RASA1. The effects of miR-132 exosomes on the angiogenic ability of endothelial cells were evaluated by tube formation assay. Matrigel plug assay and myocardial infarction model were used to determine whether miR-132 exosomes can promote angiogenesis in vivo. Results. miR-132 mimics were effectively electroporated and highly detected in MSC-derived exosomes. The expression level of miR-132 was high in HUVECs preincubated with miR-132 mimic-electroporated exosomes and low in HUVECs preincubated with miR-132 inhibitor-electroporated exosomes. The expression level of RASA1, miR-132 target gene, was reversely correlated with miR-132 expression in HUVECs pretreated with exosomes. Luciferase reporter assay further confirmed that RASA1 was a direct target of miR-132. Exosomes loaded with miR-132, as a vehicle for miRNA transfer, significantly increased tube formation of endothelial cells. Moreover, subcutaneous injection of HUVECs pretreated with miR-132 exosomes in nude mice significantly increased their angiogenesis capacity in vivo. In addition, transplantation of miR-132 exosomes in the ischemic hearts of mice markedly enhanced the neovascularization in the peri-infarct zone and preserved heart functions. Conclusions. The findings suggest that the export of miR-132 via MSC-derived exosomes represents a novel strategy to enhance angiogenesis in ischemic diseases.


Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 1801-1809 ◽  
Author(s):  
Yoshihiro Yamada ◽  
Yuichi Oike ◽  
Hisao Ogawa ◽  
Yasuhiro Ito ◽  
Hajime Fujisawa ◽  
...  

Neuropilin-1 (NP-1) is a receptor for vascular endothelial growth factor-165 (VEGF165) and acts as a coreceptor that enhances the function of VEGF165 through VEGF receptor-2 (VEGFR-2). Studies using transgenic and knock-out mice of NP-1 indicated that this molecule is important for vascular development as well as neuronal development. We recently reported that clustered soluble NP-1 phosphorylates VEGFR-2 on endothelial cells with a low dose of VEGF165 and rescues the defective vascularity of the NP-1−/− embryo in vitro and in vivo. Here we show that NP-1 is expressed by CD45+ hematopoietic cells in the fetal liver, can bind VEGF165, and phosphorylates VEGFR-2 on endothelial cells. CD45+NP-1+ cells rescued the defective vasculogenesis and angiogenesis in the NP-1−/− P-Sp (para-aortic splanchnopleural mesodermal region) culture, although CD45+NP-1− cells did not. Moreover, CD45+NP-1+ cells together with VEGF165 induced angiogenesis in an in vivo Matrigel assay and cornea neovascularization assay. The extracellular domain of NP-1 consists of “a,” “b,” and “c” domains, and it is known that the “a” and “c” domains are necessary for dimerization of NP-1. We found that both the “a” and “c” domains are essential for such rescue of defective vascularities in the NP-1 mutant. These results suggest that NP-1 enhances vasculogenesis and angiogenesis exogenously and that dimerization of NP-1 is important for enhancing vascular development. In NP-1−/− embryos, vascular sprouting is impaired at the central nervous system (CNS) and pericardium where VEGF is not abundant, indicating that NP-1–expressing cells are required for normal vascular development.


Endocrinology ◽  
2021 ◽  
Vol 162 (12) ◽  
Author(s):  
Qing Zhang ◽  
Lian Wu ◽  
Shao-Zheng Liu ◽  
Qing-Jie Chen ◽  
Ling-Peng Zeng ◽  
...  

Abstract Background During the transformation to dedifferentiated thyroid cancer (TC) types, the ability of papillary thyroid carcinomas (PTCs) to concentrate radioactive iodine might be lost, raising difficulty for the current therapy. circRNAs were proved to be implicated in the progression of various cancers. In this study, we aimed to investigate the functional role and mechanism of hsa_circ_0023990 in dedifferentiated TC. Methods The expression pattern of genes were detected using quantitative PCR or western blot assays. Cell proliferation was determined by CCK8, colony formation, EdU, and cell-cycle assays. Glycolysis was assessed using glucose uptake and lactate production assays. Luciferase reporter assay was performed to examine the interactions between miR-485-5p and hsa_circ_0023990 or FOXM1. Xenograft assay was allowed for observation of tumor growth in vivo. Results Hsa_circ_0023990 and FOXM1 were upregulated in dedifferentiated TC tissues and cell lines. The higher level of hsa_circ_0023900 could stimulate the proliferation and glycolysis of dedifferentiated TC cells via positively regulating FOXM1. Mechanistically, miR-485-5p was demonstrated to interact with hsa_circ_0023990 and FOXM1 and involved in the regulation of has_circ_0023990 and FOXM1 in TC biological processes. Conclusion Our results discovered the functional network of hsa_circ_0023990 in dedifferentiated TC development by facilitating cell proliferation and glycolysis via miR-485-5p/FOXM1 axis, implying that hsa_circ_0023990 might be a potential therapeutic target for the dedifferentiated TC treatment.


2018 ◽  
Vol 51 (2) ◽  
pp. 886-896 ◽  
Author(s):  
Xiaoya Dong ◽  
Zhigang Fang ◽  
Mingxue Yu ◽  
Ling Zhang ◽  
Ruozhi Xiao ◽  
...  

Background/Aims: Among different molecular candidates, there is growing data to support that long noncoding RNAs (lncRNAs) play a significant role in acute myeloid leukemia (AML). HOXA-AS2 is significantly overexpressed in a variety of tumors and associated with anti-cancer drug resistance, however, little is known regarding the expression and function of HOXA-AS2 in the chemoresistance of AML. In this study, we aimed to determine the role and molecular mechanism of HOXA-AS2 in adriamycin-based chemotherapy resistance in AML cells. Methods: Quantitative real-time PCR was used to detect HOXA-AS2 expression in the BM samples and ADR cell lines, U/A and T/A cells. Furthermore, the effects of HOXA-AS2 silencing on cell proliferation and apoptosis were assessed in vitro by CCK8 and flow cytometry, and on tumor growth in vivo. Furthermore, bioinformatics online programs predicted and luciferase reporter assay were used to validate the association of HOXA-AS2 and miR-520c-3p in AML. Results: In this study, we showed that HOXA-AS2 is significantly upregulated in BM samples from AML patients after treatment with adriamycin-based chemotherapy and in U/A and T/A cells. Knockdown of HOXA-AS2 inhibited ADR cell proliferation in vitro and in vivo and promoted apoptosis. Bioinformatics online programs predicted that HOXA-AS2 sponge miR-520c-3p at 3’-UTR with complementary binding sites, which was validated using luciferase reporter assay and anti-Ago2 RIP assay. HOXA-AS2 could negatively regulate the expression of miR-520c-3p in ADR cells. S100A4 was predicted as a downstream target of miR-520c-3p, which was confirmed by luciferase reporter assay. Conclusion: Our results suggest that HOXA-AS2 plays an important role in the resistance of AML cells to adriamycin. Thus, HOXA-AS2 may represent a therapeutic target for overcoming resistance to adriamycin-based chemotherapy in AML.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Zuolin Li ◽  
Jia-ling Ji ◽  
Linli Lv ◽  
Yan Yang ◽  
Tao-tao Tang ◽  
...  

Abstract Background and Aims Acute kidney injury (AKI) is increasingly recognized as a major risk factor for progression to CKD. However, the mechanisms governing AKI to CKD progression are poorly understood. Hypoxia is a key player in the pathophysiology of the AKI to CKD transition. Thus, we aimed to investigate the exact mechanisms of AKI to CKD progression mediated by hypoxia. Method Mild ischemic injury and severe ischemic injury (AKI-to-CKD transition) were established by clamping renal pedicle for 30 and 40 minutes, respectively. Meanwhile, the mice model of AKI-to-CKD transition was treated with HIF-1α inhibitor, PX-478. In vitro, PHD inhibition and combined PHD with FIH inhibition mimic the HIF-1α activation caused by mild or severe hypoxia, respectively. Besides the human proximal tubular epithelial cell line HK-2, tubular cells were isolated from mice for primary culture. KLF5 knockdown, FIH and HIF-1α C-terminal transcriptional activation domain (C-TAD) overexpression in tubular cells were achieved by Lentiviral transfection. Immunocoprecipitation was used to explore the relationship between the HIF-1α and FIH-1. Luciferase reporter assay was used to investigate whether KLF5 was regulated transcriptionally by HIF-1α C-TAD. To explore the roles of FIH-1 and HIF-1α C-TAD in vivo, FIH-1 and HIF-1α C-TAD overexpression (Lentivirus-mediated) was given after severe ischemic injury or mild ischemic injury via tail vein injection, respectively. Results AKI to CKD progression was highly associated with the time-course expression of tubular HIF-1α in severe ischemia/reperfusion injury. Interestingly, ameliorated AKI-to-CKD transition was observed by treating PX-478, which destabilized HIF-1α. In vitro, fibrogenesis could be induced by combined PHD with FIH inhibitor treatment in TEC. More interestingly, alleviated fibrogenesis could be achieved by knockdown of KLF5 and overexpression of FIH, respectively, while HIF-1α C-TAD overexpression promoted fibrogenesis in tubular cells. Immunocoprecipitation results indicated that HIF-1α and FIH-1 are interactive. Furthermore, we demonstrated that KLF5 could be regulated transcriptionally by HIF-1α C-TAD by luciferase reporter assay. In vivo, AKI to CKD progression was ameliorated significantly when mice model of AKI-to-CKD transition intervened with FIH-1 overexpression (Lentivirus-mediated). However, treatment of HIF-1α C-TAD (Lentivirus-mediated) in mild ischemic injury model could promote progression of CKD significantly. Conclusion FIH-1 mediated HIF-1α C-TAD activation was the key mechanism of AKI to CKD transition by transcriptionally regulating the KLF5 pathway in tubules. Blockade of FIH-1 mediated HIF-1α C-TAD in tubules may serve as a novel therapeutic approach to ameliorate AKI to CKD progression.


2015 ◽  
Vol 35 (1) ◽  
pp. 184-190 ◽  
Author(s):  
Weifeng Song ◽  
Qi Li ◽  
Lei Wang ◽  
Liwei Wang

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal primary tumors in humans, with undetermined tumorigenesis. Although previous work by us, and by others, has clearly demonstrated an involvement of miR-21 in the growth of PDAC, the underlying mechanism has not been clarified. Methods: Here we analyzed the regulation of FoxO1 by miR-21 in vitro and in vivo, using luciferase-reporter assay and pancreatic intraductal infusion of antisense of miR-21, respectively. Results: We found that overexpression of miR-21 in PDAC cells decreased FoxO1 protein levels, whereas inhibition of miR-21 increased FoxO1 levels. Further, miR-21 bound to FoxO1 mRNA to prevent its translation through its 3'UTR. Moreover, administration of antisense of miR-21 through an intraductal infusion system significantly decreased miR-21 levels and increased FoxO1 levels in implanted PDAC, resulting in a significant decrease in PDAC growth. Conclusion: Taken together, our data highlight miR-21/FoxO1 axis as a novel therapeutic target for inhibiting the growth of PDAC.


2001 ◽  
Vol 360 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Stephane C. BOUTET ◽  
Thomas QUERTERMOUS ◽  
Bahaa M. FADEL

TIE1, an endothelial-cell-specific tyrosine kinase receptor, is required for the survival and growth of microvascular endothelial cells during the capillary sprouting phase of vascular development. To investigate the molecular mechanisms that regulate the expression of TIE1 in the endothelium, we analysed transgenic mouse embryos carrying wild-type or mutant TIE1 promoter/LacZ constructs. Our data indicate that an upstream DNA octamer element (5′-ATGCAAAT-3′) is required for the in vivo expression of TIE1 in embryonic endothelial cells. Transgenic embryos carrying the wild-type TIE1 promoter (−466 to +78bp) fused to LacZ and spanning the octamer element demonstrate endothelial-cell-specific expression of the reporter transgene. Point mutations introduced within the octamer element result in a significant decrease of endothelial LacZ expression, suggesting that the octamer site functions as a positive regulator for TIE1 gene expression in endothelial cells. DNA–protein binding studies show that the octamer element exhibits an endothelial-cell-specific pattern of binding via interaction with endothelial-cell-restricted factor(s). Our findings suggest an important role for the octamer element in regulating the expression of the TIE1 receptor in the embryonic endothelium and suggest a common mechanism for the regulation of the angiogenic and cell-specific TIE1 and TIE2 genes during vascular development.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiaoting Li ◽  
Xiang Xue ◽  
Yuejun Sun ◽  
Lei Chen ◽  
Ting Zhao ◽  
...  

Abstract Background Our study sought to investigate the therapeutic effects and mechanisms of miR-326-5p-overexpressing endothelial progenitor cells (EPCs) on acute myocardial infarction (AMI). Methods Mouse EPCs were isolated, purified, and identified by flow cytometry and uptake of DiI-ac-LDL. The target gene of miR-326-5p was predicted using target prediction algorithms and verified by dual-luciferase reporter assay, RT-qPCR, and Western blot. After EPCs were transfected with the agomir or antagomir of miR-326-5p, tube formation assay and Matrigel plug angiogenesis assay were conducted in four groups (NC, miR-326-5p agomir, miR-326-5p antagomir, and miR-326-5p agomir+Wnt1 agonist). In addition, a mouse model of MI was established and treated with the injection of miR-326-5p-EPCs, miR-326-5p-EPCs+ Wnt1 agonist, EPCs-NC, or PBS/control into the peri-infarcted myocardium. Subsequently, cardiac function was monitored by echocardiography at 7 and 28 days postoperatively. Finally, the infarcted hearts were collected at 28 days, and the size of myocardial infarction was measured by Masson’s trichrome staining and the neovascularization in the peri-infarcted area was examined through immunofluorescence staining. Results Luciferase reporter assay indicated that Wnt1 was a direct target of miR-326-5p. Using RT-qPCR and Western blot analysis, we further demonstrated that the expression level of Wnt1 was negatively correlated with miR-326-5p expression in EPCs. Both in vitro study of tube formation assay and in vivo investigation of subcutaneous Matrigel plug assay revealed that the miR-326-5p agomir could significantly enhance the angiogenic capacity of EPCs, and this effect was partially inhibited by Wnt1 agonist. Meanwhile, miR-326-5p antagomir could obviously reduce the the angiogenic capacity of EPCs in vivo compared with that in the NC group. Moreover, the transplantation of miR-326-5p-overexpressing EPCs in the ischemic hearts of mice significantly enhanced the angiogenesis in the peri-infarcted zone and improved the cardiac function. However, the enhanced capacity of angiogenesis of miR-326-5p-overexpressing EPCs was remarkably neutralized by Wnt1 agonist, accompanied by the decreased improvement in cardiac function. Conclusion miR-326-5p significantly enhanced the angiogenic capacity of EPCs. Transplantation of miR-326-5p-overexpressing EPCs improved cardiac function for AMI therapy, which can be a novel strategy for enhancing therapeutic angiogenesis in ischemic heart diseases.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhu Qiao ◽  
Yue Zou ◽  
Hu Zhao

Abstract Background Salivary adenoid cystic carcinoma (SACC) is one of the most frequent carcinomas derived from the salivary gland. Growing evidence implied the involvement of microRNAs (miRNAs) in SACC progression and metastasis. This study aimed to determine the regulatory role of miR-140-5p in SACC progression and metastasis and to explore the underlying mechanisms. Materials and methods MiR-140-5p and survivin mRNA expression levels were determined by quantitative real-time PCR; protein levels were evaluated by western blot assay; cell proliferation, growth, invasion, apoptosis and caspase-3 activity were evaluated by respective in vitro functional assays; xenograft nude mice model was used to assess the in vivo tumor growth; a luciferase reporter assay determined the interaction between miR-140-5p and survivin. Results MiR-140-5p overexpression suppressed SACC cell proliferation and invasion, induced cell apoptosis and inhibited in vivo tumor growth of SACC cells. The loss-of-function studies showed that miR-140-5p knockdown enhanced SACC cell proliferation and invasion, inhibited cell apoptosis and led to an accelerated in vivo tumor growth. The bioinformatics prediction and luciferase reporter assay revealed that miR-140-5p directly targeted survivin 3′ untranslated region, and survivin was inversely regulated by miR-140-5p. Knockdown of survivin exerted tumor-suppressive effects on SACC cells, while enforced expression of survivin counteracted the tumor-suppressive actions of miR-140-5p overexpression in SACC cells. Mechanistically, miR-140-5p modulated the protein expression levels of apoptosis- and epithelial-mesenchymal transition-related mediators as well as matrix metallopeptidase-2/-9 via targeting survivin. More importantly, the down-regulation of miR-140-5p and the up-regulation of survivin were detected in the SACC clinical tissues, and miR-140-5 expression was inversely correlated with survivin mRNA expression level in SACC tissues. Conclusion Our data indicated that miR-140-5p suppressed SACC cell proliferation and invasion, induced cell apoptosis via regulating survivin expression. The present study provide evidence that that miR-140-5p could be a promising target for treating SACC, which requires further investigations.


2019 ◽  
Vol 52 (1) ◽  
Author(s):  
Guangjun Li ◽  
Qingli Kong

Abstract Background Papillary thyroid cancer (PTC) is the most common malignancy of all thyroid cancers. LncRNA LINC00460 has been proved to play roles in the oncogenesis and progression of various tumors, including papillary thyroid cancer. However, the potential molecular mechanism of LINC00460 in PTC is poorly investigated. Results LINC00460 was upregulated in PTC tissues and cells. Raf1 was upregulated in PTC tissues, but miR-485-5p was down-regulated. High LINC00460 expression was associated with poor prognosis. LINC00460 knockdown suppressed proliferation, migration, invation and EMT of PTC cells. Bioinformatics prediction revealed that LINC00460 had binding sites with miR-485-5p, which was validated by luciferase reporter assay. In addition, miR-485-5p was confirmed to directly target Raf1 3′-UTR. Moreover, LINC00460 promoted PTC progression by sponging miR-485-5p to elevate the expression of Raf1. Knockdown of LINC00460 restrained tumor growth in vivo. Conclusion LINC00460 induced proliferation, migration, invation and EMT of PTC cells by regulating the LINC00460/miR-485-5p/Raf1 axis, which indicated that LINC00460 may be a potential biomarker and therapeutic target for PTC.


Sign in / Sign up

Export Citation Format

Share Document