scholarly journals MicroRNA-326-5p enhances therapeutic potential of endothelial progenitor cells for myocardial infarction

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiaoting Li ◽  
Xiang Xue ◽  
Yuejun Sun ◽  
Lei Chen ◽  
Ting Zhao ◽  
...  

Abstract Background Our study sought to investigate the therapeutic effects and mechanisms of miR-326-5p-overexpressing endothelial progenitor cells (EPCs) on acute myocardial infarction (AMI). Methods Mouse EPCs were isolated, purified, and identified by flow cytometry and uptake of DiI-ac-LDL. The target gene of miR-326-5p was predicted using target prediction algorithms and verified by dual-luciferase reporter assay, RT-qPCR, and Western blot. After EPCs were transfected with the agomir or antagomir of miR-326-5p, tube formation assay and Matrigel plug angiogenesis assay were conducted in four groups (NC, miR-326-5p agomir, miR-326-5p antagomir, and miR-326-5p agomir+Wnt1 agonist). In addition, a mouse model of MI was established and treated with the injection of miR-326-5p-EPCs, miR-326-5p-EPCs+ Wnt1 agonist, EPCs-NC, or PBS/control into the peri-infarcted myocardium. Subsequently, cardiac function was monitored by echocardiography at 7 and 28 days postoperatively. Finally, the infarcted hearts were collected at 28 days, and the size of myocardial infarction was measured by Masson’s trichrome staining and the neovascularization in the peri-infarcted area was examined through immunofluorescence staining. Results Luciferase reporter assay indicated that Wnt1 was a direct target of miR-326-5p. Using RT-qPCR and Western blot analysis, we further demonstrated that the expression level of Wnt1 was negatively correlated with miR-326-5p expression in EPCs. Both in vitro study of tube formation assay and in vivo investigation of subcutaneous Matrigel plug assay revealed that the miR-326-5p agomir could significantly enhance the angiogenic capacity of EPCs, and this effect was partially inhibited by Wnt1 agonist. Meanwhile, miR-326-5p antagomir could obviously reduce the the angiogenic capacity of EPCs in vivo compared with that in the NC group. Moreover, the transplantation of miR-326-5p-overexpressing EPCs in the ischemic hearts of mice significantly enhanced the angiogenesis in the peri-infarcted zone and improved the cardiac function. However, the enhanced capacity of angiogenesis of miR-326-5p-overexpressing EPCs was remarkably neutralized by Wnt1 agonist, accompanied by the decreased improvement in cardiac function. Conclusion miR-326-5p significantly enhanced the angiogenic capacity of EPCs. Transplantation of miR-326-5p-overexpressing EPCs improved cardiac function for AMI therapy, which can be a novel strategy for enhancing therapeutic angiogenesis in ischemic heart diseases.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Teng Ma ◽  
Yueqiu Chen ◽  
Yihuan Chen ◽  
Qingyou Meng ◽  
Jiacheng Sun ◽  
...  

Background. To cure ischemic diseases, angiogenesis needs to be improved by various strategies in ischemic area. Considering that microRNA-132 (miR-132) regulates endothelial cell behavior during angiogenesis and the safe and efficacious delivery of microRNAs in vivo is rarely achieved, an ideal vehicle for miR-132 delivery could bring the promise for ischemic diseases. As a natural carrier of biological molecules, exosomes are more and more developed as an ideal vehicle for miRNA transfer. Meanwhile, mesenchymal stem cells could release large amounts of exosomes. Thus, this study aimed to investigate whether MSC-derived exosomes can be used for miR-132 delivery in the treatment of myocardial ischemia. Methods. MSC-derived exosomes were electroporated with miR-132 mimics and inhibitors. After electroporation, miR-132 exosomes were labelled with DiI and added to HUVECs. Internalization of DiI-labelled exosomes was examined by fluorescent microscopy. Expression levels of miR-132 in exosomes and HUVECs were quantified by real-time PCR. The mRNA levels of miR-132 target gene RASA1 in HUVECs were quantified by real-time PCR. Luciferase reporter assay was performed to examine the targeting relationship between miR-132 and RASA1. The effects of miR-132 exosomes on the angiogenic ability of endothelial cells were evaluated by tube formation assay. Matrigel plug assay and myocardial infarction model were used to determine whether miR-132 exosomes can promote angiogenesis in vivo. Results. miR-132 mimics were effectively electroporated and highly detected in MSC-derived exosomes. The expression level of miR-132 was high in HUVECs preincubated with miR-132 mimic-electroporated exosomes and low in HUVECs preincubated with miR-132 inhibitor-electroporated exosomes. The expression level of RASA1, miR-132 target gene, was reversely correlated with miR-132 expression in HUVECs pretreated with exosomes. Luciferase reporter assay further confirmed that RASA1 was a direct target of miR-132. Exosomes loaded with miR-132, as a vehicle for miRNA transfer, significantly increased tube formation of endothelial cells. Moreover, subcutaneous injection of HUVECs pretreated with miR-132 exosomes in nude mice significantly increased their angiogenesis capacity in vivo. In addition, transplantation of miR-132 exosomes in the ischemic hearts of mice markedly enhanced the neovascularization in the peri-infarct zone and preserved heart functions. Conclusions. The findings suggest that the export of miR-132 via MSC-derived exosomes represents a novel strategy to enhance angiogenesis in ischemic diseases.


2018 ◽  
Vol 50 (1) ◽  
pp. 261-276 ◽  
Author(s):  
Xiaobing Liu ◽  
Xing Luo ◽  
Yuqi Wu ◽  
Ding Xia ◽  
Wei Chen ◽  
...  

Background/Aims: Treatment options for metastatic castrate-resistant prostate cancer (mCRPC) are limited and typically centered on paclitaxel-based chemotherapy. In this study, we aimed to evaluate whether miR-34a attenuates chemoresistance to paclitaxel by regulating target genes associated with drug resistance. Methods: We used data from The Cancer Genome Atlas to compare miR-34a expression levels in prostate cancer (PC) tissues with normal prostate tissues. The effects of miR-34a inhibition and overexpression on PC proliferation were evaluated in vitro via Cell Counting Kit-8 (CCK-8) proliferation, colony formation, apoptosis, and cell-cycle assays. A luciferase reporter assay was employed to identify the interactions between miR-34a and specific target genes. To determine the effects of up-regulation of miR-34a on tumor growth and chemo-resistance in vivo, we injected PC cells overexpressing miR-34a into nude mice subcutaneously and evaluated the rate of tumor growth during paclitaxel treatment. We examined changes in the expression levels of miR-34a target genes JAG1 and Notch1 and their downstream genes via miR-34a transfection by quantitative reverse transcription PCR (qRT-PCR) and western blot assay. Results: miR-34a served as an independent predictor of reduced patient survival. MiR-34a was down-regulated in PC-3PR cells compared with PC-3 cells. The CCK-8 assay showed that miR-34a overexpression resulted in increased sensitivity to paclitaxel while miR-34a down-regulation resulted in chemoresistance to paclitaxel in vitro. A study of gain and loss in a series of functional assays revealed that PC cells expressing miR-34a were chemosensitive. Furthermore, the overexpression of miR-34a increased the sensitivity of PC-3PR cells to chemotherapy in vivo. The luciferase reporter assay confirmed that JAG1 and Notch1 were directly targeted by miR-34a. Interestingly, western blot analysis and qRT-PCR confirmed that miR-34a inhibited the Notch1 signaling pathway. We found that miR-34a increased the chemosensitivity of PC-3PR cells by directly repressing the TCF1/ LEF1 axis. Conclusion: Our results showed that miR-34a is involved in the development of chemosensitivity to paclitaxel. By regulating the JAG1/Notch1 axis, miR-34a or its target genes JAG1 or Notch1 might serve as potential predictive biomarkers of response to paclitaxel-based chemotherapy and/or therapeutic targets that will help to overcome chemoresistance at the mCRPC stage.


2017 ◽  
Vol 42 (6) ◽  
pp. 2207-2219 ◽  
Author(s):  
Jinxia Yuan ◽  
Hongtao Chen ◽  
Dawei Ge ◽  
Yu Xu ◽  
Haihua Xu ◽  
...  

Background/Aims: Cardiac fibrosis after myocardial infarction (MI) has been identified as an important factor in the deterioration of heart function. Previous studies have demonstrated that miR-21 plays an important role in various pathophysiological processes in the heart. However, the role of miR-21 in fibrosis regulation after MI remains unclear. Methods: To induce cardiac infarction, the left anterior descending coronary artery was permanently ligated of mice. First, we explored the expression of miR-21 in the infarcted zone in mice model of MI via RT-qPCR. Next, we examined the effects of TGF-β1 on miR-21 expression in cardiac fibroblasts (CFs). Then, CFs were infected with miR-21 mimics or miR-21 inhibitors to investigate the effects of miR-21 on the process of CFs activation in vitro. Further, bioinformatics analysis and luciferase reporter assay were performed to identify and validate the target gene of miR-21. At last, in-vivo study was done to confirm MiR-21 regulated myocardial fibrosis after MI in mice. Results: MiR-21 was up-regulated in the infarcted zone after MI in vivo. TGF-β1 treatment increased miR-21 expression in CFs. Overexpression of miR-21 promoted the effects of TGF-β1-induced activation of CFs, evidenced by increased expression of Col-1, α-SMA and F-actin, whereas inhibition of miR-21 attenuated the process of fibrosis. Bioinformatics, Western blot analysis and luciferase reporter assay demonstrated that Smad7 is a direct target of miR-21. In addition, in-vivo study revealed that MiR-21 regulated myocardial fibrosis after MI in mice. Conclusion: These findings suggested that miR-21 has a critical role in CF activation and cardiac fibrosis after MI through via TGF-β/Smad7 signaling pathway. Thus, miR-21 promises to be a potential therapy in treatment of cardiac fibrosis after MI.


2020 ◽  
Vol 40 (11) ◽  
Author(s):  
Lihua Sun ◽  
Ying Zhang ◽  
Junshi Zhang ◽  
Juan Wang ◽  
Shifeng Xing

Abstract The present study was aimed at investigating the detailed functions of atorvastatin, a lipid-lowering agent, in the pathogenesis of coronary slow flow (CSF), a clinical disease characterized by delayed angiographic coronary opacity without obstructive coronary disease. In the present study, we successfully identified isolated endothelial progenitor cells (EPCs) from the peripheral blood of patients with CSF. Their vascular endothelial growth factor-A (VEGFA) protein levels were determined using immunoblotting analyses. We determined cell viability using MTT assays, cell migration capacity using Transwell assays, and the angiogenic capacity using a tube formation assay. The target association between miR-221 and VEGFA was validated with a luciferase reporter assay. Atorvastatin treatment increased EPC VEGFA protein levels, proliferation, migration, and angiogenesis. miR-221 expression was down-regulated after atorvastatin treatment; miR-221 overexpression exerted an opposing effect to atorvastatin treatment on VEGFA protein, EPC proliferation, migration, and angiogenesis. The protective effects of atorvastatin treatment on VEGFA protein and EPCs could be significantly suppressed by miR-221 overexpression. miR-221 directly bound the VEGFA 3′UTR to inhibit its expression. In conclusion, atorvastatin improves the cell proliferation, migration, and angiogenesis of EPCs via the miR-221/VEGFA axis. Thus, atorvastatin could be a potent agent against CSF, pending further in vivo and clinical investigations.


2018 ◽  
Vol 51 (2) ◽  
pp. 886-896 ◽  
Author(s):  
Xiaoya Dong ◽  
Zhigang Fang ◽  
Mingxue Yu ◽  
Ling Zhang ◽  
Ruozhi Xiao ◽  
...  

Background/Aims: Among different molecular candidates, there is growing data to support that long noncoding RNAs (lncRNAs) play a significant role in acute myeloid leukemia (AML). HOXA-AS2 is significantly overexpressed in a variety of tumors and associated with anti-cancer drug resistance, however, little is known regarding the expression and function of HOXA-AS2 in the chemoresistance of AML. In this study, we aimed to determine the role and molecular mechanism of HOXA-AS2 in adriamycin-based chemotherapy resistance in AML cells. Methods: Quantitative real-time PCR was used to detect HOXA-AS2 expression in the BM samples and ADR cell lines, U/A and T/A cells. Furthermore, the effects of HOXA-AS2 silencing on cell proliferation and apoptosis were assessed in vitro by CCK8 and flow cytometry, and on tumor growth in vivo. Furthermore, bioinformatics online programs predicted and luciferase reporter assay were used to validate the association of HOXA-AS2 and miR-520c-3p in AML. Results: In this study, we showed that HOXA-AS2 is significantly upregulated in BM samples from AML patients after treatment with adriamycin-based chemotherapy and in U/A and T/A cells. Knockdown of HOXA-AS2 inhibited ADR cell proliferation in vitro and in vivo and promoted apoptosis. Bioinformatics online programs predicted that HOXA-AS2 sponge miR-520c-3p at 3’-UTR with complementary binding sites, which was validated using luciferase reporter assay and anti-Ago2 RIP assay. HOXA-AS2 could negatively regulate the expression of miR-520c-3p in ADR cells. S100A4 was predicted as a downstream target of miR-520c-3p, which was confirmed by luciferase reporter assay. Conclusion: Our results suggest that HOXA-AS2 plays an important role in the resistance of AML cells to adriamycin. Thus, HOXA-AS2 may represent a therapeutic target for overcoming resistance to adriamycin-based chemotherapy in AML.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5188-5188
Author(s):  
Eun-Sun Yoo ◽  
Yeung-Chul Mun ◽  
Eun Mi Nam ◽  
Kyoung Eun Lee ◽  
Jung Won Huh ◽  
...  

Abstract Abstract 5188 Background: Reactive oxygen species (ROS) such as superoxide and H2O2 have roles signaling for molecules on angiogenesis. NADPH oxidase Nox2 (gp91phox) is a major source of ROS. Previous, we had found that Nox2-based NADPH oxidase (gp91phox)-induced ROS may play important roles on EPCs migration and proliferation by VEGF (Blood. 2009;114:Abstract 1445). In the present study, we studied the impact of down-regulation of Nox2 on intracellular ROS level, proliferation, transmigration, and in vitro tube formation of HCB derived EPCs via Nox2 siRNA transfection. Methods: Outgrowing endothelial progenitor cells were established from mononuclear cells of human cord blood (Yoo et al, Stem cells. 2003;21:228-235) using EGM-2 media in a fibronectin-coated dish. EPCs were transfected with HiPerFection transfection reagent plus Nox2 siRNA or non-targeting control siRNA and cultured for 5 hours. 100ng/ml of VEGF was added to the transfected cells and cultured for overnight. Expression of Nox2 and pERK in the Nox2 siRNA transfected EPCs were detected by western blot analysis. Intracellular ROS level was analyzed by staining with 2, 7-dichlrodihydro-fluorescein-diacetate (H2DCF-DA) and flow cytometry. Transmigration against VEGF was performed using transwell system (Costar) and in vitro tube formation was assayed using In vitro angiogenesis kit (Chemicon). Results: Intracellular ROS level was increased during endothelial progenitor cell culture which were derived from HCB by VEGF treatment. Proliferation, in vitro tube formation matrigel assay and migration assay on endothelial progenitor cells using VEGF were decreased with Nox2 siRNA transfection when compared with that of control group. In western blot data, Nox2-based NADPH oxidase (gp91phox) was increased by VEGF and decreased by Nox2 siRNA transfection. VEGF induced pERK expression was also decreased by Nox2 siRNA transfection as well. Conclusions: Based on our studies, Nox2-based NADPH oxidase (gp91phox)-induced ROS may have important roles on proliferation in HCB induced EPCs by VEGF stimulation. Furthermore, Nox2 siRNA transfection into HCB derived EPC down-regulated intracellular ROS production and pERK expression. Our data may be useful finding the new therapeutic targets for ischemic heart and ischemic limb diseases by manipulating the level of intracellular ROS via Nox2. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Derek S. Wheeler ◽  
John S. Giuliano ◽  
Patrick M. Lahni ◽  
Alvin Denenberg ◽  
Hector R. Wong ◽  
...  

Albumin appears to have proinflammatory effectsin vitro. We hypothesized that albumin would induce a state of tolerance to subsequent administration of lipopolysaccharide (LPS)in vitroandin vivo. RAW264.7 and primary peritoneal macrophages were treated with increasing doses of bovine serum albumin (BSA) and harvested for NF-κB luciferase reporter assay or TNF-αELISA. In separate experiments, RAW264.7 cells were preconditioned with 1 mg/mL BSA for 18 h prior to LPS (10 μg/mL) treatment and harvested for NF-κB luciferase reporter assay or TNF-αELISA. Finally, C57Bl/6 mice were preconditioned with albumin via intraperitoneal administration 18 h prior to a lethal dose of LPS (60 mg/kg body wt). Blood was collected at 6 h after LPS administration for TNF-αELISA. Albumin produced a dose-dependent and TLR-4-dependent increase in NF-κB activation and TNF-αgene expressionin vitro. Albumin preconditioning abrogated the LPS-mediated increase in NF-κB activation and TNF-αgene expressionin vitroandin vivo. The clinical significance of these findings remains to be elucidated.


2015 ◽  
Vol 396 (3) ◽  
pp. 245-252 ◽  
Author(s):  
Sebastian M. Goerke ◽  
Lena S. Kiefer ◽  
G. Björn Stark ◽  
Filip Simunovic ◽  
Günter Finkenzeller

Abstract Vascularization plays an important role in tissue engineering applications. It is known that implantation of differentiated endothelial cells or endothelial progenitor cells (EPCs) from cord blood (cbEPCs) gives rise to the formation of a complex functional neovasculature, whereas EPCs isolated from peripheral blood (pbEPCs) have a limited capability to form blood vessels upon implantation. MicroRNA-126 (miR-126) has been shown to have pro-angiogenic effects in vivo. In this study, we investigated whether modulation of miR-126 expression in pbEPCs may alter their angiogenic properties. Gain of function and loss of function experiments revealed that miR-126 has anti-angiogenic effects in pbEPCs. Overexpression of miR-126 resulted in decreased proliferation, migration, invasion and tube formation, while inhibition of miR-126 induced the opposite effects. However, modulation of miR-126 expression did not influence apoptotic susceptibility of pbEPCs. This study provides evidence that inhibition of miR-126 improves angiogenesis-related growth parameters in pbEPCs and may represent a therapeutic option to ameliorate the angiogenic and vasculogenic properties of pbEPCs.


2020 ◽  
Author(s):  
Pengcheng Li ◽  
Junhui Xing ◽  
Jianwu Jiang ◽  
Xinyu Tian ◽  
Xuemeng Liu ◽  
...  

Abstract Background: Nasopharyngeal carcinoma (NPC) is the most common malignant tumor in the head and neck that is characterized by high local malignant invasion and distant metastasis. miR-18a-5p reportedly plays an important role in tumorigenesis and development. However, little is known about the mechanism underlying miR-18a-5p’s role in NPC.Methods:Quantitative real-time PCR was used to detect the expression of miR-18a-5p in NPC tissues and cell lines. MTT assay and plate clone formation assay were used to detect the effect of miR-18a-5p on NPC cell proliferation. Woundhealing assays and Transwell assays were used to detect the effect of miR-18a-5p on NPC cell invasion and migration. The expressions of epithelialmesenchymal transition (EMT)-related proteins N-cadherin, Vimentin, and E-cadherin were detected by Westernblot. Bioinformatics and dual-luciferase reporter assay were used to detect the targeting interaction between miR-18a-5p and SMAD2. Xenotransplantation and metastasis model were used to detect the effect of miR-18a-5p on NPC growth and metastasis in vivo.Results:miR-18a-5p was highly expressed in NPC tissues and cell lines. Overexpression of miR-18a-5p promotedNPC cell proliferation, invasion, migration, and EMT process, whereas inhibition of miR-18a-5p expression led to the oppositeresults. Results of dual-luciferase reporter assay showed that SMAD2 was the target gene of miR-18a-5p, and SMAD2 could reverse the effect of miR-18a-5p on NPC cell line. Xenotransplantation and metastasis model experiments in nude mice showed that miR-18a-5p promotesNPC growth and metastasis in vivo.Conclusions:Targeting SMAD2 downregulated miR-18a-5p expression, thereby promoting NPC cell proliferation, invasion, migration, and EMT.


Sign in / Sign up

Export Citation Format

Share Document