A Novel Homozygous Frameshift Mutation in ITGB3 Causes Glanzmann’s Thrombasthenia

2021 ◽  
pp. 1-6
Author(s):  
XueHong Li ◽  
Jing Xu ◽  
ZhenJiang Li ◽  
Yuan Song ◽  
Yan Fei ◽  
...  

The objective of this study was to elucidate the molecular characteristics of a Chinese family with Glanzmann’s thrombasthenia (GT). The proband was diagnosed with GT based on clinical manifestations, platelet aggregation, and the expression of CD41 and CD61 in platelets. Whole-exome and Sanger sequencing were used to detect genetic defects related to GT in the proband and the family of the pedigree. Whole-exome sequencing showed a c.1784–1802delinsGTCACA, p. S595Cfs*70 homozygous mutation in exon 11 of the ITGB3 gene in the proband. Heterozygous mutations were found in the proband’s parents, grandmother, uncle, aunt, and younger brother. This novel p. S595Cfs*70 ITGB3 gene mutation is not present in the 1000 Genomes and ExAC databases.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiuhua Chao ◽  
Yun Xiao ◽  
Fengguo Zhang ◽  
Jianfen Luo ◽  
Ruijie Wang ◽  
...  

Aims. This study is aimed at (1) analyzing the clinical manifestations and genetic features of a novel POU3F4 mutation in a nonsyndromic X-linked recessive hearing loss family and (2) reporting the outcomes of cochlear implantation in a patient with this mutation. Methods. A patient who was diagnosed as the IP-III malformation underwent cochlear implantation in our hospital. The genetic analysis was conducted in his family, including the whole-exome sequencing combined with Sanger sequencing and bioinformatic analysis. Clinical features, preoperative auditory and speech performances, and postoperative outcomes of cochlear implant (CI) were assessed on the proband and his family. Results. A novel variant c.400_401insACTC (p.Q136LfsX58) in the POU3F4 gene was detected in the family, which was cosegregated with the hearing loss. This variant was absent in 200 normal-hearing persons. The phylogenetic analysis and structure modeling of Pou3f4 protein further confirmed that the novel mutation was pathogenic. The proband underwent cochlear implantation on the right ear at four years old and gained greatly auditory and speech improvement. However, the benefits of the CI declined about three and a half years postoperation. Though the right ear had been reimplanted, the outcomes were still worse than before. Conclusion. A novel frame shift variant c.400_401insACTC (p.Q136LfsX58) in the POU3F4 gene was identified in a Chinese family with X-linked inheritance hearing loss. A patient with this mutation and IP-III malformation could get good benefits from CI. However, the outcomes of the cochlear implantation might decline as the patient grows old.


Cephalalgia ◽  
2019 ◽  
Vol 39 (11) ◽  
pp. 1382-1395
Author(s):  
Wenjing Tang ◽  
Meichen Zhang ◽  
Enchao Qiu ◽  
Shanshan Kong ◽  
Yingji Li ◽  
...  

Background ATP1A2 has been identified as the genetic cause of familial hemiplegic migraine type 2. Over 80 ATP1A2 mutations have been reported, but no data from Chinese family studies has been included. Here, we report the first familial hemiplegic migraine type 2 Chinese family with a novel missense mutation. Methods Clinical manifestations in the family were recorded. Blood samples from patients and the unaffected members were collected for whole-exome sequencing to identify the pathogenic mutation. Seven online softwares (SIFT, PolyPhen-2, PROVEAN, PANTHER, MutationTaster2, MutationAssessor and PMut) were used for predicting the pathogenic potential of the mutation. PredictProtein, Jpred 4 and PyMOL were used to analyze structural changes of the protein. The mutation function was further tested by Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Results All patients in the family had typical hemiplegic migraine attacks. Co-segregation of the mutation with the migraine phenotype in four generations, with 10 patients, was completed. The identified novel mutation, G762S in ATP1A2, exhibited the disease-causing feature by all the predictive softwares. The mutation impaired the local structure of the protein and decreased cell viability. Conclusion G762S in ATP1A2 is a novel pathogenic mutation identified in a Chinese family with familial hemiplegic migraine, which causes loss of function by changing the protein structure of the Na+/K+-ATPase α2 subunit.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Qin Xiang ◽  
Lamei Yuan ◽  
Yanna Cao ◽  
Hongbo Xu ◽  
Yunfeiyang Li ◽  
...  

Background/Aims. Corneal dystrophies (CDs) belong to a group of hereditary heterogeneous corneal diseases which result in visual impairment due to the progressive accumulation of deposits in different corneal layers. So far, mutations in several genes have been responsible for various CDs. The purpose of this study is to identify gene mutations in a three-generation Hui-Chinese family associated with granular corneal dystrophy type I (GCD1). Methods. A three-generation Hui-Chinese pedigree with GCD1 was recruited for this study. Slit-lamp biomicroscopy, optical coherence tomography, and confocal microscopy were performed to determine the clinical features of available members. Whole exome sequencing was performed on two patients to screen for potential disease-causing variants in the family. Sanger sequencing was used to test the variant in the family members. Results. Clinical examinations demonstrated bilaterally abundant multiple grayish-white opacities in the basal epithelial and superficial stroma layers of corneas of the two patients. Whole exome sequencing revealed that a heterozygous missense mutation (c.1663C > T, p.Arg555Trp) in the transforming growth factor beta-induced gene (TGFBI) was shared by the two patients, and it cosegregated with this disease in the family confirmed by Sanger sequencing. Conclusions. The results suggested that the heterozygous TGFBI c.1663C > T (p.Arg555Trp) mutation was responsible for GCD1 in the Hui-Chinese family, which should be of great help in genetic counseling for this family.


1979 ◽  
Author(s):  
E.F. von Leeuwen ◽  
G.T.E. Zonneveld ◽  
L.E. von Riesz ◽  
C.S.P Jenkins ◽  
J.A. van Mourik ◽  
...  

The expression of the platelet-speciftc alloantigens on the platelets from 6 patients with Glanzmann’s Thrombasthenia (G.T.) and their nearest relatives was studied. The alloantigens Zwa (PIAl) and Zwb(PIA2) were found to be completely absent from thrombasthenic platelets while the alloantigens of the Ko-system were found to be normally expressed. The alloantigen Baka(phenotypefrequency 90.2%) was absent on the platelets from 4 studied G.T. patients. The platelets of all the family members reacted positively with anti-Zwa, negatively with antt-Zwb serum. SDS-PA gel electrophoresis of G.T. platelet membranes demonstrated a marked deficiency of the glycoproteins IIb and IIIa. Glycoprotein analysis of the platelet membranes from the family members of 3 of the 6 patients reveoled no apparent abnormalities.Pre-incubation with anti-Zwa containing plasma strongly inhibits ADP-and collagen induced aggregation of platelets from normal Zwa homozygous individuols with a slight inhibition of the aggregation induced by ristocetin. Zwa antibodies did not affect the functions of platelets from ZWb homozygous individuals. Thus binding of Zwa antibodies induces a thrombosthenis-like state.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5056-5056
Author(s):  
Ru Feng ◽  
Lixia Hao ◽  
Yongmin Zhang ◽  
Yongqiang Wei ◽  
Fen Huang ◽  
...  

Abstract Abstract 5056 Introduction: JAK2V617F point mutation have been confirmed to be one of the major molecular mechanism of BCR/ABL negative myeloproliferative disorders(MPD). Besides, some other gene mutations such as JAK2 exon12, MPL W515L/K, c-mpl and EPOR have extended the scope of the research in this field. Most of the MPD patients are sporadic and there are seldom reports in Chinese familial MPD. 2008 ASH metting we have reported in a Chinese family of MPD's findings, the two brothers in our hospital diagnosis for MPD (one is a PV, another is ET), then we investigated the 15 members of the family. We discovered that there were three male members carried the JAK2V617F mutation in this family, including the two MPD patients and their father, which affected in two generations. All the family members were confirmed as BCR/ABL, MPL W515L/K, c-mpl, and EPOR negative. Subsequently, in order to understand the existence of family members in addition to the gene JAK2 V617F mutation, the existence of JAK2 gene mutations in other parts of the? if other mutations in existence and the high incidence of family members of MPD? We focus on the cDNA full-length of JAK2 gene to provide some theory basis on the pathogenesis in MPD. Methods: A total of 15 family members were enrolled in our study, including 2 brothers of MPD patients (the older one was thrombocythemia (ET), and another is polycythemia vera (PV)) and the other members in the same family. The mRNA of mononuclear cells from peripheral blood sample was extracted according to the manufacturer's instruction (TAKARA). RT-PCR and DNA sequencing have been used to analyze the cDNA full-length of the JAK2 gene. Results: All of the samples can be analyzed for JAK2 cDNA full-length. 3 members carried the JAK2V617F mutation (1849G®T) in this family, including the two MPD patients and their father. And the older brother was homozygous mutation and the other two were heterozygous mutation. All of the 15 samples were JAK2 exon12 gene mutation negative. 2 persons who were the male ET patient's children had a heterozygous mutation (380G®A) in JAK2 exon 3, caused a glycine-to-asparticacid substitution at position 127. Besides, 13 persons had 489C®T mutation in exon 4 and 14 persons had 2490G→A mutation in exon 17 in this family, But they were both same-sense mutation. Conclusion: It is necessary to do routine analysis of blood and other related inspection for MPD patient's family members, so as to make diagnosis earlier. However, we are not sure that the sequencing results are unique to all the familial MPD and need to be confirmed by more cases. We still do not determine the current discovery point mutations have biological significance, still need to be further explored. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 8 ◽  
Author(s):  
Jie Wang ◽  
Huan Li ◽  
Min Sun ◽  
Ying Yang ◽  
Qianli Yang ◽  
...  

Mitochondrial diseases constitute a group of heterogeneous hereditary diseases caused by impairments in mitochondrial oxidative phosphorylation and abnormal cellular energy metabolism. C1QBP plays an important role in mitochondrial homeostasis. In this study, clinical, laboratory examinations, 12-lead electrocardiographic, ultrasonic cardiogram, and magnetic resonance imaging data were collected from four members of a Chinese family. Whole exome were amplified and sequenced for the proband. The structure of protein encoded by the mutation was predicted using multiple software programs. The proband was a 14-year old boy with myocardial hypertrophy, exercise intolerance, ptosis, and increased lactate. His 9-year old brother exhibited similar clinical manifestations while the phenomenon of ptosis was not as noticeable as the proband. The onset of this disease was in infancy in both cases. They were born after uneventful pregnancies of five generation blood relative Chinese parents. A homozygous mutation (Leu275Phe) in the C1QBP gene was identified in both brothers in an autosomal recessive inherited pattern. Their parents were heterozygous mutation carriers without clinical manifestations. We demonstrated that a homozygous C1QBP- P.Leu275Phe mutation in an autosomal recessive inherited mode of inheritance caused early onset combined oxidative phosphorylation deficiency 33 (COXPD 33) (OMIM:617713) in two brothers from a Chinese family.


2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Yi Guo ◽  
Peng Wang ◽  
Xiaorong Li ◽  
Shaihong Zhu ◽  
Hongbo Xu ◽  
...  

Abstract Breast cancer (BC) is the most common female cancer found worldwide. It is responsible for 25% of all cancer patients in females. Hereditary BC accounts for about 5–10% of all BC cases. The breast cancer 1 gene (BRCA1) and the breast cancer 2 gene (BRCA2) are the two most-studied BC susceptibility genes. Genetic testing for disease-causing mutations in BRCA1, BRCA2, and other BC susceptibility genes is strongly recommended for members of families having a BC family history. The present study found a heterozygous c.5722_5723del mutation in the BRCA2 exon 11 of a large Han-Chinese BC family using whole exome sequencing and Sanger sequencing. It may cause DNA double-strand breaks repair dysfunction by disturbing homologous recombination, further resulting in BC. The study findings may help supplement and further improve genetic testing strategies and BC risk estimation methodologies in China.


2016 ◽  
Vol 2016 ◽  
pp. 1-4 ◽  
Author(s):  
Véronique Taché ◽  
Liga Bivina ◽  
Sophie White ◽  
Jeffrey Gregg ◽  
Joshua Deignan ◽  
...  

A term male neonate developed severe intractable lactic acidosis on day of life 1 and died the same day at our institution. The family previously lost another term, female newborn on day of life 1 from suspected sepsis at an outside hospital. After performing an autopsy on the neonate who died at our institution, extensive and lengthy neonatal and parental genetic testing, as well as biochemical analyses, and whole exome sequencing analysis identified compound heterozygous mutations in the lipoyltransferase 1 (LIPT1)gene responsible for the lipoylation of the 2-keto dehydrogenase complexes in the proband. These mutations were also identified in the deceased sibling. The clinical manifestations of these two siblings are consistent with those recently described in two unrelated families with lactic acidosis due toLIPT1mutations, an underrecognized and underreported cause of neonatal death.Conclusions. Our observations contribute to the delineation of a new autosomal recessive metabolic disorder, leading to neonatal death. Our case report also highlights the importance of an interdisciplinary team in solving challenging cases.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Shaoyi Mei ◽  
Xiaosheng Huang ◽  
Lin Cheng ◽  
Shiming Peng ◽  
Tianhui Zhu ◽  
...  

Background. To investigate the genetic causes and clinical characteristics of dominant optic atrophy (DOA) in a Chinese family. Methods. A 5-generation pedigree of 35 family members including 12 individuals affected with DOA was recruited from Shenzhen Eye Hospital, China. Four affected family members and one unaffected family member were selected for whole exome sequencing. Sanger sequencing was used to confirm and screen the identified mutation in 18 members of the family. The disease-causing mutation was identified by bioinformatics analysis and confirmed by segregation analysis. The clinical characteristics of the family members were analyzed. Results. A heterozygous missense mutation (c.1313A>G, p.D438G) in optic atrophy 1 (OPA1) was identified in 10 individuals affected with DOA in this family. None of the unaffected family members had the mutation. Patients in this family had vision loss since they were children or adolescence. The visual acuity decreased progressively to hand movement, except for one patient (IV-12) who had relatively good vision of 20/30 and 20/28. The fundus typically manifested as optic disc pallor. The visual fields, optical coherence tomography, and visual evoked potential suggested variable degree of abnormality in patients. Patients who had a history of cigarette smoking and alcohol drinking had more severe clinical manifestations. Conclusions. Our results suggest that the p.D438G mutation in OPA1 causes optic atrophy in this family. The patients who carried the mutation demonstrated heterogeneous clinical manifestations in this family. This is the first report on the c.1313A>G (p.D438G) mutation of OPA1 in a Chinese family affected with DOA.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Guangxian Yang ◽  
Yi Yin ◽  
Zhiping Tan ◽  
Jian Liu ◽  
Xicheng Deng ◽  
...  

Abstract Background Previous studies have revealed that mutations of Spalt Like Transcription Factor 1 (SALL1) are responsible for Townes-Brocks syndrome (TBS), a rare genetic disorder that is characterized by an imperforate anus, dysplastic ears, thumb malformations and other abnormalities, such as hearing loss, foot malformations, renal impairment with or without renal malformations, genitourinary malformations, and congenital heart disease. In addition, the protein tyrosine phosphatase receptor type Q (PTPRQ) gene has been identified in nonsyndromic hearing loss patients with autosomal recessive or autosomal dominant inherited patterns. Methods A Chinese family with TBS and hearing loss was enrolled in this study. The proband was a two-month-old girl who suffered from congenital anal atresia with rectal perineal fistula, ventricular septal defect, patent ductus arteriosus, pulmonary hypertension (PH), and finger deformities. The proband’s father also had external ear deformity with deafness, toe deformities and PH, although his anus was normal. Further investigation found that the proband’s mother presented nonsyndromic hearing loss, and the proband’s mother’s parents were consanguine married. Whole-exome sequencing and Sanger sequencing were applied to detect the genetic lesions of TBS and nonsyndromic hearing loss. Results Via whole-exome sequencing and Sanger sequencing of the proband and her mother, we identified a novel heterozygous mutation (ENST00000251020: c.1428_1429insT, p. K478QfsX38) of SALL1 in the proband and her father who presented TBS phenotypes, and we also detected a new homozygous mutation [ENST00000266688: c.1057_1057delC, p. L353SfsX8)] of PTPRQ in the proband’s mother and uncle, who suffered from nonsyndromic hearing loss. Both mutations were located in the conserved sites of the respective protein and were predicted to be deleterious by informatics analysis. Conclusions This study confirmed the diagnosis of TBS at the molecular level and expanded the spectrum of SALL1 mutations and PTPRQ mutations. Our study may contribute to the clinical management and genetic counselling of TBS and hearing loss.


Sign in / Sign up

Export Citation Format

Share Document