Trichodynia Revisited

2021 ◽  
pp. 1-5
Author(s):  
Ralph M. Trüeb ◽  
Michela V.R. Starace ◽  
Bianca Maria Piraccini ◽  
Hudson Dutra Rezende ◽  
Maria Fernanda Reis Gavazzoni Dias

Trichodynia refers to the painful sensation of the scalp related to the complaint of hair loss. Originally suggested to be distinguishing for telogen effluvium and related to hair loss activity and follicular inflammation, further studies have found trichodynia to be common in androgenetic alopecia as well and coexisting with psychopathologic findings. The respective studies failed to demonstrate correlations between trichodynia and quantifiable hair loss activity, nor histopathologic evidence for follicular inflammation. A symptomatic scalp is a frequent condition in specific dermatological conditions of the scalp. By definition of exclusion, we are not dealing with trichodynia in these cases. It is conceivable that neuropeptides are key players between the central nervous system and the skin immune and microvascular system. Such mechanisms would explain the noxious effects of both external stimuli and emotional distress in eliciting cutaneous nociception. Since we have begun to understand the diverse etiologies of trichodynia, and a single term does not measure up to this circumstance, it may be wiser to describe the condition depending on the type of scalp sensation and its specific disease association. Further studies are warranted into the neural/endothelial/follicular interactions both in hair growth and shedding and the psychosomatic diseases of the hair and scalp.

2021 ◽  
pp. 1-5
Author(s):  
Chloe J. Walker ◽  
Kelly E. Flanagan ◽  
James T. Pathoulas ◽  
Isabel Pupo Wiss ◽  
Maryanne M. Senna

<b><i>Introduction:</i></b> Tocilizumab (TCZ), a recombinant humanized antihuman monoclonal antibody targeting interleukin-6 (IL-6) signaling, is often utilized in the management of autoimmune disease. Few reports have demonstrated hair growth changes in patients on TCZ. <b><i>Case Presentation:</i></b> Herein, we review the literature and report a 21-year-old woman with progressive alopecia areata (AA) presenting with AA improvement while on TCZ for concomitant posterior uveitis. <b><i>Discussion:</i></b> Our case demonstrates the potential ability of TCZ to disrupt IL-6 signaling involved in AA, leading to hair loss and regrowth.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 576
Author(s):  
Maurizio Polano ◽  
Emanuele Fabbiani ◽  
Eva Adreuzzi ◽  
Federica Di Cintio ◽  
Luca Bedon ◽  
...  

Gliomas are the most common primary neoplasm of the central nervous system. A promising frontier in the definition of glioma prognosis and treatment is represented by epigenetics. Furthermore, in this study, we developed a machine learning classification model based on epigenetic data (CpG probes) to separate patients according to their state of immunosuppression. We considered 573 cases of low-grade glioma (LGG) and glioblastoma (GBM) from The Cancer Genome Atlas (TCGA). First, from gene expression data, we derived a novel binary indicator to flag patients with a favorable immune state. Then, based on previous studies, we selected the genes related to the immune state of tumor microenvironment. After, we improved the selection with a data-driven procedure, based on Boruta. Finally, we tuned, trained, and evaluated both random forest and neural network classifiers on the resulting dataset. We found that a multi-layer perceptron network fed by the 338 probes selected by applying both expert choice and Boruta results in the best performance, achieving an out-of-sample accuracy of 82.8%, a Matthews correlation coefficient of 0.657, and an area under the ROC curve of 0.9. Based on the proposed model, we provided a method to stratify glioma patients according to their epigenomic state.


2017 ◽  
Vol 89 ◽  
pp. 438-446 ◽  
Author(s):  
Zhan-di Wang ◽  
Ying Feng ◽  
Li-yi Ma ◽  
Xian Li ◽  
Wei-feng Ding ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1808 ◽  
Author(s):  
Gennaro Riccio ◽  
Eduardo Sommella ◽  
Nadia Badolati ◽  
Emanuela Salviati ◽  
Sara Bottone ◽  
...  

Chemotherapy-induced alopecia (CIA) is a common side effect of conventional chemotherapy and represents a major problem in clinical oncology. Even months after the end of chemotherapy, many cancer patients complain of hair loss, a condition that is psychologically difficult to manage. CIA disturbs social and sexual interactions and causes anxiety and depression. Synthetic drugs protecting from CIA and endowed with hair growth stimulatory properties are prescribed with caution by oncologists. Hormones, growth factors, morphogens could unwontedly protect tumour cells or induce cancer cell proliferation and are thus considered incompatible with many chemotherapy regimens. Nutraceuticals, on the contrary, have been shown to be safe and effective treatment options for hair loss. We here show that polyphenols from Malus Pumila Miller cv Annurca are endowed with hair growth promoting activity and can be considered a safe alternative to avoid CIA. In vitro, Annurca Apple Polyphenolic Extract (AAE) protects murine Hair Follicles (HF) from taxanes induced dystrophy. Moreover, in virtue of its mechanism of action, AAE is herein proven to be compatible with chemotherapy regimens. AAE forces HFs to produce ATP using mitochondrial β-oxidation, reducing Pentose Phosphate Pathway (PPP) rate and nucleotides production. As consequence, DNA replication and mitosis are not stimulated, while a pool of free amino acids usually involved in catabolic reactions are spared for keratin production. Moreover, measuring the effect exerted on Poly Unsaturated Fatty Acid (PUFA) metabolism, we prove that AAE promotes hair-growth by increasing the intracellular levels of Prostaglandins F2α (PGF2α) and by hijacking PUFA catabolites toward β-oxidation.


2018 ◽  
Vol 2 (4) ◽  
pp. 36-43

Botulism is dangerous toxic infection caused by a toxin produced by the bacterium Clostridium botulinum. The mortality rate from botulism can reach 70% of all cases of illness in case of untimely initiation of treatment. The pathogenesis of botulism involves the damage to the central nervous system by a toxin produced by C. botulinum. Currently there are seven recognized antigenic types of this toxin. Botulinum toxin is included into the group of biological agents and it is one of the most likely agents to be used in a biological attack. Since botulinum neurotoxin is a complex nucleoprotein complex and the traces of DNA can be detected even in purified toxin preparations, we have elaborated a technique for detecting and identifying DNA of toxigenic strains of Clostridium botulinum types A, B, E, that cause human botulism in most cases. This technique is based on the the detection of residual amounts of this DNA in botulinum toxin using multiplex real-time polymerase chain reaction (PCR) assay with fluorescent hybridization detection. The main obstacle to development of a technique for the detection and identification of DNA of toxigenic strains is the high variability of the genes responsible for the synthesis of botulinum toxin. We have established a region of the gene with the lowest homology in all strains. This requirement is met by a fragment of the bont gene that encodes a light chain of a neurotoxin and is highly conserved in the strains of C. botulinum producing one type of toxin. The paper represents the results of the definition of analytical sensitivity and specific activity of the developed method. The specificity of the determination is 100%, the analytical sensitivity – 1×10 2 mc./ml. The method can be used to analyze food, samples of clinical materials and environmental samples suspected of being contaminated with toxigenic strains of C. botulinum


2021 ◽  
Vol 15 (1) ◽  
pp. 52-58
Author(s):  
Ruchi Tiwari ◽  
Gaurav Tiwari ◽  
Ajeet Yadav ◽  
Vadivelan Ramachandran

Background: In the mammalian system, the hair follicle is known to be the most significant organ that determines appearance, gender distinction, provides intense temperature protection, and plays a role in self-defense. The younger generations have begun to suffer from extreme hair loss problems due to many lifestyle-related changes such as fatigue, anxiety, intake of junk foods, use of different hairstyling/coloring methods, etc. The loss of hair is not temporary in most cases, but it results in alopecia. Many people suffering from hair loss are in search of multiple treatments due to extreme anxiety and tension, from mythology to traditional and therapeutic healing to the use of minoxidil and finasteride. To improve hair growth and to prevent hair loss, hair root activation is required. Objective: The present study was intended to use different herbs to formulate herbal hair serum for general purposes (hair application). Methods: Crude herbs are obtained from nearby regions. In order to obtain the extract, the required part of herbs, such as Citrus sinensis peel, Zingiber officinale roots, and Linum usitatissimum seeds, Nigella sativa, and Trigonella foenum-graecum were specifically weighed and dispensed in water, boiled, allowed to cool, and then filtered. To the filtrate, castor oil and vitamin E were added. The formulated herbal hair serum was tested, and different criteria were determined and recorded in this text, such as physical appearance, viscosity, pH, homogeneity, eye sensitivity (Draize eye test), hair growth activity, hair weight, stability test, etc. Results: Prepared herbal hair serum was found to be pale brown in color with pseudoplastic behavior. The texture of the formulation was smooth and lubricative, and the pH was within the acceptable limit. Herbal hair serum revealed good hair growth as well as hair weight after application with minor sensitivity for the first time. The formulation was found to be stable for seven days. Conclusion: Herbal cosmetics are still commonly used by average citizens because of fewer side effects and greater protection and safety profile. Current research has revealed that herbal formulations are effective in enhancing hair consistency.


2013 ◽  
Author(s):  
James Q Del Rosso

A basic knowledge of the hair growth cycle is needed to evaluate disorders of hair growth. This chapter presents a broad overview of the physiology and evaluation of hair growth, as well as discussions of specific types of alopecia. The epidemiology, pathogenesis, diagnosis, and treatment of androgenetic alopecia, the most common type of nonscarring hair loss, are covered. Diffuse hair shedding is generalized hair loss over the entire scalp. Diagnosis and treatment of telogen effluvium, anagen arrest (anagen effluvium), and other causes of diffuse hair shedding are covered in detail. Alopecia areata, typically characterized by patchy hair loss; cicatricial alopecia, which results from permanent scarring of the hair follicles; and miscellaneous causes of hair loss are also discussed. Tables list the causes of diffuse and cicatricial alopecia, telogen effluvium, and miscellaneous chemicals and categories of drugs that can cause alopecia, as well as miscellaneous causes of hair loss. Included is an algorithm outlining the approach to diagnosing nonscarring alopecia, as well as a variety of clinical photographs. This review contains 9 highly rendered figures, 6 tables, and 42 references.


Cosmetics ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 66
Author(s):  
Hyoung Chul Choi ◽  
Gae Won Nam ◽  
Noh Hee Jeong ◽  
Bu Young Choi

Inula helenium (IH) is known to possess antifungal, anti-bacterial, anti-helminthic, and anti-proliferation activities. Caesalpinia Sappan (CS) is known to reduce inflammation and improve blood circulation. Based on their folkloric use, these plants are expected to be promising candidates for promoting hair growth and preventing hair loss. Moreover, these plants are rich sources of certain phytochemicals, which have been reported to promote hair growth. In this clinical trial, we investigate the efficacy of a scalp shampoo formulated by mixing extracts of IH and CS in preventing hair loss and promoting hair growth in patients with androgenetic alopecia. Using a phototrichogram (Folliscope 2.8, LeadM, Korea), we compared the hair density and total hair counts in patients receiving the scalp shampoo at baseline, and at 8, 16, and 24 weeks after use of the shampoo. We found a statistically significant increase in the total hair count in the test group (n = 23) after 16 and 24 weeks of using the scalp shampoo (2.17 n/cm2 ± 5.72, p < 0.05; and 4.30 n/cm2 ± 6.37, p < 0.01, respectively) as compared to the control subjects. Based on the results of this clinical study, we conclude that the IH and CS extract complex is a promising remedy for preventing hair loss and promoting hair growth.


Sign in / Sign up

Export Citation Format

Share Document