scholarly journals Characteristic Magnetic Resonance Image Features of Acute Network Injury in Young Patients

2021 ◽  
pp. 628-633
Author(s):  
Sohyeon Kim ◽  
Sung-Il Sohn ◽  
Hyungjong Park ◽  
JoonSik Kim ◽  
Jeong-Ho Hong

Cerebral infarction is known to cause secondary degeneration of the areas connected to the primarily damaged regions. This has been named as acute network injury and is usually recognized in newborns or babies by high signal intensity on diffusion-weighted imaging (DWI). In this article, we present 2 cases demonstrating several characteristics of network injury. Some features are comparable to previous studies and others are distinctive to our cases. The patients not only showed secondary injury in the thorough pyramidal tract along the longitudinal extensions of neural tracts as expected but also followed transverse connections to reach the contralateral hemisphere. The location of network injury varied according to the initial lesion and projected in an omnidirectional manner as long as the brain parts are interconnected. In addition, the cases well demonstrated the temporal changes on brain imaging. Network injury appeared on DWI around a week after major damage and then subsequently disappeared. The overall process of appearance to disappearance was completed within 2 weeks from the symptom onset. As ominous neurological outcomes are thought to be related to acute network injuries, a comprehensive understanding of the phenomenon is pivotal in improving diagnosis and management.

2020 ◽  
Vol 4 (11) ◽  
Author(s):  
Katherine M Ranard ◽  
Matthew J Kuchan ◽  
John W Erdman

ABSTRACT Studying vitamin E [α-tocopherol (α-T)] metabolism and function in the brain and other tissues requires an animal model with low α-T status, such as the transgenic α-T transfer protein (Ttpa)–null (Ttpa−/−) mouse model. Ttpa+/− dams can be used to produce Ttpa−/− and Ttpa+/+mice for these studies. However, the α-T content in Ttpa+/− dams’ diet requires optimization; diets must provide sufficient α-T for reproduction, while minimizing the transfer of α-T to the offspring destined for future studies that require low baseline α-T status. The goal of this work was to assess the effectiveness and feasibility of 2 breeding diet strategies on reproduction outcomes and offspring brain α-T concentrations. These findings will help standardize the breeding methodology used to generate the Ttpa−/− mice for neurological studies.


1994 ◽  
Vol 10 (4-5) ◽  
pp. 561-571
Author(s):  
Gunnar Heuser ◽  
Ismael Mena ◽  
Francisca Alamos

Exposures to neurotoxic chemicals such as pesticides, glues, solvents, etc. are known to induce neurologic and psychiatric symptomatology. We report on 41 patients 16 young patients (6 males, 10 females, age 34 8 yrs.) and 25 elderly patients (9 males, 16 females, age 55 7 yrs). Fifteen of them were exposed to pesticides, and 29 to solvents. They were studied with quantitative and qualitative analysis of regional cerebral bood flow (rCBF), performed with 30 mCi of Xe-133 by inhalation, followed by 30 mCi of Tc-HMPAO given intravenously. Imaging was performed with a brain dedicated system, distribution of rCBF was assessed with automatic ROI definition, and HMPAO was normalized to maximal pixel activity in the brain. Results of Xe rCBF are expressed as mean and S.D. in ml/min/100g, and HMPAO as mean and S.D. uptake per ROI, and compared with age-matched controls 10 young and 20 elderly individuals. Neurotoxics HMPAO Uptake Young Elderly R. Orbital frontal R. Dorsal frontal .70 .66 p < 0.05 R. Temporal .64 p < 0.001 R. Parietal .66 .66 We conclude that patients exposed to chemicals present with diminished CBF, worse in the right hemisphere, with random presentation of areas of hypoperfusion, more prevalent in the dorsal frontal and parietal lobes. These findings are significantly different from observations in patients with chronic fatigue and depression, suggesting primary cortical effect, possibly due to a vasculitis process.


2021 ◽  
Vol 22 (1) ◽  
pp. 83-86
Author(s):  
O. A. Kicherova ◽  
◽  
L. I. Reikhert ◽  
O. N. Bovt ◽  
◽  
...  

In recent years, cerebral vascular diseases have been increasingly detected in young patients. It is due not only to better physicians’ knowledge about this pathology, but also to the improvement of its diagnosis methods. Modern neuroimaging techniques allow us to clarify the nature of hemorrhage, to determine the volume and location of intracerebral hematoma, and to establish the degree of concomitant edema and dislocation of the brain. However, despite the high accuracy of the research, it is not always possible to establish the cause that led to a brain accident, which greatly affects the tactics of management and outcomes in this category of patients. A special feature of the structure of cerebrovascular diseases of young people is the high proportion of hemorrhagic stroke, the causes of which are most often arterio-venous malformations. Meanwhile, there are a number of other causes that can lead to hemorrhage into the brain substance. These include disorders of blood clotting, and various vasculitis, and exposure to toxic substances and drugs, and tumor formations (primary and secondary). All these pathological factors outline the range of diagnostic search in young patients who underwent hemorrhagic stroke. Diagnosis of these pathological conditions with the help of modern visualization techniques is considered to be easy, but this is not always the case. In this article, the authors give their own clinical observation of a hemorrhagic stroke in a young patient, which demonstrates the complexity of the diagnostic search in patients with this pathology.


2018 ◽  
Vol 39 (10) ◽  
pp. 1906-1918 ◽  
Author(s):  
Kota Kurisu ◽  
Zhen Zheng ◽  
Jong Youl Kim ◽  
Jian Shi ◽  
Atsushi Kanoke ◽  
...  

Triggering receptor expressed on myeloid cells-2 (TREM2) is an innate immune receptor that promotes phagocytosis by myeloid cells such as microglia and macrophages. We previously showed that TREM2 deficiency worsened outcomes from experimental stroke and impeded phagocytosis. However, myeloid cells participating in stroke pathology include both brain resident microglia and circulating macrophages. We now clarify whether TREM2 on brain microglia or circulating macrophages contribute to its beneficial role in ischemic stroke by generating bone marrow (BM) chimeric mice. BM chimera mice from TREM2 knockout (KO) or wild type (Wt) mice were used as donor and recipient mice. Mice were subjected to experimental stroke, and neurological function and infarct volume were assessed. Mice with intact TREM2 in brain microglia showed better neurological recovery and reduced infarct volumes, compared with mice lacking microglial TREM2. Myeloid cell activation and numbers of phagocytes were decreased in mice lacking brain TREM2, compared with mice with intact brain TREM2. These results suggest that TREM2 expression is important for post-stroke recovery, and that TREM2 expression on brain resident microglia is more essential to this recovery, than that of circulating macrophages. These findings might suggest a new therapeutic target for cerebrovascular diseases.


2021 ◽  
pp. 1-9
Author(s):  
Joshua S. Catapano ◽  
Fabio A. Frisoli ◽  
Candice L. Nguyen ◽  
Mohamed A. Labib ◽  
Tyler S. Cole ◽  
...  

OBJECTIVE Supplemented Spetzler-Martin grading (Supp-SM), which is the combination of Spetzler-Martin and Lawton-Young grades, was validated as being more accurate than stand-alone Spetzler-Martin grading, but an operability cutoff was not established. In this study, the authors surgically treated intermediate-grade AVMs to provide prognostic factors for neurological outcomes and to define AVMs at the boundary of operability. METHODS Surgically treated Supp-SM intermediate-grade (5, 6, and 7) AVMs were analyzed from 2011 to 2018 at two medical centers. Worsened neurological outcomes were defined as increased modified Rankin Scale (mRS) scores on postoperative examinations. A second analysis of 2000–2011 data for Supp-SM grade 6 and 7 AVMs was performed to determine the subtypes with improved or unchanged outcomes. Patients were separated into three groups based on nidus size (S1: < 3 cm, S2: 3–6 cm, S3: > 6 cm) and age (A1: < 20 years, A2: 20–40 years, A3: > 40 years), followed by any combination of the combined supplemented grade: low risk (S1A1, S1A2, S2A1), intermediate risk (S2A2, S1A3, S3A1, or high risk (S3A3, S3A2, S2A3). RESULTS Two hundred forty-six patients had intermediate Supp-SM grade AVMs. Of these patients, 102 had Supp-SM grade 5 (41.5%), 99 had Supp-SM grade 6 (40.2%), and 45 had Supp-SM grade 7 (18.3%). Significant differences in the proportions of patients with worse mRS scores at follow-up were found between the groups, with 24.5% (25/102) of patients in Supp-SM grade 5, 29.3% (29/99) in Supp-SM grade 6, and 57.8% (26/45) in Supp-SM grade 7 (p < 0.001). Patients with Supp-SM grade 7 AVMs had significantly increased odds of worse postoperative mRS scores (p < 0.001; OR 3.7, 95% CI 1.9–7.3). In the expanded cohort of 349 Supp-SM grade 6 AVM patients, a significantly higher proportion of older patients with larger Supp-SM grade 6 AVMs (grade 6+, 38.6%) had neurological deterioration than the others with Supp-SM grade 6 AVMs (22.9%, p = 0.02). Conversely, in an expanded cohort of 197 Supp-SM grade 7 AVM patients, a significantly lower proportion of younger patients with smaller Supp-SM grade 7 AVMs (grade 7–, 19%) had neurological deterioration than the others with Supp-SM grade 7 AVMs (44.9%, p = 0.01). CONCLUSIONS Patients with Supp-SM grade 7 AVMs are at increased risk of worse postoperative neurological outcomes, making Supp-SM grade 6 an appropriate operability cutoff. However, young patients with small niduses in the low-risk Supp-SM grade 7 group (grade 7−) have favorable postoperative outcomes. Outcomes in Supp-SM grade 7 patients did not improve with surgeon experience, indicating that the operability boundary is a hard limit reflecting the complexity of high-grade AVMs.


2020 ◽  
Vol 21 (S6) ◽  
Author(s):  
Jianqiang Li ◽  
Guanghui Fu ◽  
Yueda Chen ◽  
Pengzhi Li ◽  
Bo Liu ◽  
...  

Abstract Background Screening of the brain computerised tomography (CT) images is a primary method currently used for initial detection of patients with brain trauma or other conditions. In recent years, deep learning technique has shown remarkable advantages in the clinical practice. Researchers have attempted to use deep learning methods to detect brain diseases from CT images. Methods often used to detect diseases choose images with visible lesions from full-slice brain CT scans, which need to be labelled by doctors. This is an inaccurate method because doctors detect brain disease from a full sequence scan of CT images and one patient may have multiple concurrent conditions in practice. The method cannot take into account the dependencies between the slices and the causal relationships among various brain diseases. Moreover, labelling images slice by slice spends much time and expense. Detecting multiple diseases from full slice brain CT images is, therefore, an important research subject with practical implications. Results In this paper, we propose a model called the slice dependencies learning model (SDLM). It learns image features from a series of variable length brain CT images and slice dependencies between different slices in a set of images to predict abnormalities. The model is necessary to only label the disease reflected in the full-slice brain scan. We use the CQ500 dataset to evaluate our proposed model, which contains 1194 full sets of CT scans from a total of 491 subjects. Each set of data from one subject contains scans with one to eight different slice thicknesses and various diseases that are captured in a range of 30 to 396 slices in a set. The evaluation results present that the precision is 67.57%, the recall is 61.04%, the F1 score is 0.6412, and the areas under the receiver operating characteristic curves (AUCs) is 0.8934. Conclusion The proposed model is a new architecture that uses a full-slice brain CT scan for multi-label classification, unlike the traditional methods which only classify the brain images at the slice level. It has great potential for application to multi-label detection problems, especially with regard to the brain CT images.


1963 ◽  
Vol 18 (6) ◽  
pp. 1139-1145 ◽  
Author(s):  
Fred Plum ◽  
Harold W. Brown

To analyze cerebral influences modifying autonomic respiratory responses, we compared normals and patients with bilateral pyramidal tract disease for their ventilatory response to hypoxia and hypoxia-hypercapnia. During eucapnia, the two groups showed similar hypoxic responses. During hypercapnia, the ventilatory response to hypoxia was greater in the brain-damaged subjects. This apparent augmentation, however, was due entirely to anoxia interacting with an abnormally facilitated carbon dioxide sensitivity: compared with normals, brain-damaged patients at PaOO2 90–100 mm Hg showed an 85% greater CO2 response, and at PaOO2 50 mm Hg showed a 79% greater CO2 response. Since cerebral dysfunction facilitated the ventilatory response to hypoxia-hypercapnia combined but not the response to hypoxia alone, the results imply that the two respiratory stimuli interact centrally rather than peripherally. respiration; brain damage; interaction; carbon dioxide response; forebrain effects; ventilation with CNS disease Submitted on February 18, 1963


2020 ◽  
Vol 13 (9) ◽  
pp. e233144
Author(s):  
Elaf Abdulnabi Mohammed ◽  
Sulaiman Ali Hajji ◽  
Khaled Aljenaee ◽  
Mohammad Ibrahim Ghanbar

A 25-year-old woman brought to the hospital with symptoms of acute confusion, disorientation, diplopia, hearing loss and unsteady gait which started 4 days prior to her presentation with rapid worsening in its course until the day of admission. She had a surgical history of laparoscopic sleeve gastrectomy 2 months earlier which was complicated by persistent vomiting around one to three times per day. She lost 30 kg of her weight over 2 months and was not compliant to vitamin supplementation. CT of the brain was unremarkable. Brain MRI was done which showed high signal intensity lesions involving the bilateral thalamic regions symmetrically with restricted diffusion on fluid-attenuated inversion recovery imaging. Other radiological investigations, such as magnetic resonance venography and magnetic resonance angiography of the brain were unremarkable. An official audiogram confirmed the sensorineural hearing loss. A diagnosis of Wernicke’s encephalopathy due to thiamin deficiency post-sleeve gastrectomy was made based on the constellation of her medical background, clinical presentation and further supported by the distinct MRI findings. Consequently, serum thiamin level was requested and intravenous thiamin 500 mg three times per day for six doses was started empirically, then thiamin 250 mg intravenously once daily given for 5 more days. Marked improvement in cognition, eye movements, strength and ambulation were noticed soon after therapy. She was maintained on a high caloric diet with calcium, magnesium oxide, vitamin D supplements and oral thiamin with successful recovery of the majority of her neurological function with normal cognition, strength, reflexes, ocular movements, but had minimal resolution of her hearing deficit. Serum thiamin level later was 36 nmol/L (67–200).


Sign in / Sign up

Export Citation Format

Share Document