scholarly journals Advanced modulation coding schemes for an optical transceiver systems–based OWC communication channel model

2021 ◽  
Vol 10 (2) ◽  
pp. 767-775
Author(s):  
Hazem M. El-Hageen ◽  
Aadel M. Alatwi ◽  
Ahmed Nabih Zaki Rashed

This paper examines advanced modulation coding schemes for an optical transceiver systems–based optical wireless communication (OWC) channel model. These modulation techniquesinclude On-Off keying and return to zero (RZ)/non–return to zero (NRZ) coding. The signal power level against time and frequency spectral variations are measured. The max. Q factor and min. bit error rate (BER) are estimated and clarified for each modulation code scheme by using an optisystem simulation model. Transmission bit rates of up to 40 Gb/s can be achieved for possible distances up to 500 km with acceptable Q factor. The received power and max. Q factor are measured and clarified with OWC distance variations. The On-Off keying modulation code scheme resulted in better performance than the other modulation code schemes did.

Author(s):  
Abdulrasul A. Al-Hayder ◽  
H. J. Abd ◽  
Ahmed Samawi Alkhafaji

Limitations of conventional wires such as copper wires are causing dispersion and distortion of the message signal for long distances communication especially for the wide bandwidths. The ability of fiber optic to overcome this problem is making it a dominant transmission medium. Despite of this major positive attribute of optic fibers, there is still a downside for using the fiber optic communication; that is the nonlinearity problem especially at the very high frequency bandwidth. For the first time, a desigen of an audio signal is suggested and executed in MatLab with an integration with OptiSystemTM software to discuss and solve this issu. The audio signal is then transmitted in different shapes of modulation signals (NRZ, RZ & RC) for different distances (100 km & 75 km) via a fiber optic media to be received in a receiving part of the simulated system. Three tests are used to do so. The first is the Quality-factor (Q-Factor) against the received power, second test is eye diagram performance and finally is the measuring of the amplitude of output (received) signal for each modulation signal shape using the Oscilloscope Visualizer. The NZR modulation signal was found to be the best one of the three used signals’ types in all three tests. The Q-factor for NRZ pulse shape (=12) was higher than that for RZ (=10) and RC (=8) for a 100 km distance at the same received power level.


2021 ◽  
pp. 386-393
Author(s):  
Safiy Sabril ◽  
◽  
Faezah Jasman ◽  
Wan Hafiza Wan Hassan ◽  
Zaiton A. Mutalip ◽  
...  

This paper introduces a stratified approach to modeling underwater optical wireless communication (UOWC). The influence of medium inhomogeneity, which many researchers ignore, was considered in modeling the UOWC channel to achieve an accurate model. The Monte Carlo technique to simulate the photon propagation was adapted to include medium inhomogeneity to estimate the received power, channel bandwidth, and delay spread of the proposed model. We use the depth-dependent chlorophyll profile that was established in Kameda empirical model to constitute the medium inhomogeneity. The empirical model used 0.5 mg m-3 and 2 mg m-3 of surface chlorophyll concentration to represent clear and coastal water. Besides, the comparison between collimated and diffused links was also studied to highlight the effect of the medium inhomogeneity on both links. Our findings indicate that the homogeneous model produces an underestimation result compared to the stratified model. The stratified model estimated significant increases in received power, lower delay spread, and higher bandwidth, which indicates the medium inhomogeneity is important for a realistic channel model.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 920
Author(s):  
Neha Chaudhary ◽  
Othman Isam Younus ◽  
Luis Nero Alves ◽  
Zabih Ghassemlooy ◽  
Stanislav Zvanovec ◽  
...  

The accuracy of the received signal strength-based visible light positioning (VLP) system in indoor applications is constrained by the tilt angles of transmitters (Txs) and receivers as well as multipath reflections. In this paper, for the first time, we show that tilting the Tx can be beneficial in VLP systems considering both line of sight (LoS) and non-line of sight transmission paths. With the Txs oriented towards the center of the receiving plane (i.e., the pointing center F), the received power level is maximized due to the LoS components on F. We also show that the proposed scheme offers a significant accuracy improvement of up to ~66% compared with a typical non-tilted Tx VLP at a dedicated location within a room using a low complex linear least square algorithm with polynomial regression. The effect of tilting the Tx on the lighting uniformity is also investigated and results proved that the uniformity achieved complies with the European Standard EN 12464-1. Furthermore, we show that the accuracy of VLP can be further enhanced with a minimum positioning error of 8 mm by changing the height of F.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Nabil Arsalane ◽  
Moctar Mouhamadou ◽  
Cyril Decroze ◽  
David Carsenat ◽  
Miguel Angel Garcia-Fernandez ◽  
...  

Emulation methodology of multiple clusters channels for evaluating wireless communication devices over-the-air (OTA) performance is investigated. This methodology has been used along with the implementation of the SIMO LTE standard. It consists of evaluating effective diversity gain (EDG) level of SIMO LTE-OFDM system for different channel models according to the received power by establishing an active link between the transmitter and the receiver. The measurement process is set up in a Reverberation Chamber (RC). The obtained results are compared to the reference case of single input-single output (SISO) in order to evaluate the real improvement attained by the implemented system.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahmoud M. A. Eid ◽  
Ahmed Nabih Zaki Rashed ◽  
Mohd. Sultan Ahammad ◽  
Bikash Kumar Paul ◽  
Kawsar Ahmed

Abstract This study presents the effects of Tx./Rx. pointing errors on the performance efficiency of local area optical wireless communication networks. The received signal power and max Q factor are measured in the presence of vertical-cavity surface-emitting lasers (VCSELs) bias current and modulation current at maximum propagation distance for the wireless network. The signal is enhanced with increasing of bias and modulation peak currents of the VCSEL device. The optimum received power and max. Q factor is also examined at Tx./Rx. the pointing error of 0.1 mrad and propagation reach of 5 km at available bit rates transmission of 10 Gb/s.


2017 ◽  
Vol 39 (1) ◽  
Author(s):  
Mehtab Singh

AbstractOptical wireless communication (OWC) systems also known as Free space optics (FSO) are capable of providing high channel bandwidth, high data transmission rates, low power consumption, and high security. OWC links are being considered in different applications such as inter-satellite links, terrestrial links, and inter-aircraft communication links. This paper investigates the impact of different system parameters such as transmission power level, operating wavelength, transmitter pointing error angle, bit transmission rate, atmospheric attenuation, antenna aperture diameter, geometric losses, the responsivity of the photodetector, and link range on the performance of inter-aircraft optical wireless communication link.


Author(s):  
Muhammad Usman Sheikh ◽  
Kalle Ruttik ◽  
Riku Jäntti ◽  
Jyri Hämäläinen

AbstractThe aim of this work is to study the impact of small receiver displacement on a signal propagation in a typical conference room environment at a millimeter wave frequency of 60 GHz. While channel measurements provide insights on the propagation phenomena, their use for the wireless system performance evaluation is challenging. Whereas, carefully executed three-dimensional ray tracing (RT) simulations represent a more flexible option. Nevertheless, a careful validation of simulation methodology is needed. The first target of this article is to highlight the benefits of an in-house built three-dimensional RT tool at 60 GHz and shows the effectiveness of simulations in predicting different characteristics of the channel. To validate the simulation results against the measurements, two different transmitter (Tx) positions and antenna types along with ten receiver (Rx) positions are considered in a typical conference room. In first system configuration, an omnidirectional antenna is placed in the middle of the table, while in the second system configuration a directed horn antenna is located in the corner of the meeting room. After validating the simulation results with the measurement data, in the second part of this work, the impact of a small change, i.e., 20 cm in the receiver position, is studied. To characterize the impact, we apply as performance indicators the received power level, root mean square delay spread (RMS-DS) and RMS angular spread (RMS-AS) in azimuth plane. The channel characteristics are considered with respect to the direct orientation (DO), i.e., the Rx antenna is directed toward the strongest incoming path. Different antenna configurations at the Tx and Rx side are applied to highlight the role of antenna properties on the considered channel characteristics. Especially, in the second system configuration the impact of different antenna half power beamwidth on different considered channel characteristics is highlighted through acquired simulation results. The validation of results shows the RMS error of only 2–3 dB between the measured and simulated received power levels for different Tx configurations in the direction of DO. Results indicate that only a small change of the Rx position may result a large difference in the received power level even in the presence of line-of-sight between the Tx and Rx. It is found that the STD of received power level across the room increases with the decrease in HPBW of the antenna. As can be expected, directed antennas offer lower value of RMS-DS and RMS-AS compared with isotropic antenna.


Sign in / Sign up

Export Citation Format

Share Document