scholarly journals Novel Resonant Structure to Compact Partial H-Plane Band-Pass Waveguide Filter

Author(s):  
Elahe Mohhamadi ◽  
Habib Ghorbaninejad

In this paper partial H-plane band-pass waveguide filter, utilizing a novel resonant structure comprising a metal window along with metal posts has been proposed to compact the filter size. The metal windows and posts have been implemented transversely in a partial H-plane waveguides, which have one-quarter cross section size compared to the conventional waveguides in the same frequency range. Partial H-plane band-pass waveguide filter with novel proposed resonant structures has considerably shorter longitudinal length compared to the conventional partial H-plane filters, so that they reduce both cross section size and the total length of the filter compared to conventional H-plane filters, in the same frequency range. In the presented design procedure, the size and shape of each metal window and metal posts has been determined by fitting the transfer function of the proposed resonant structure to that of a desired one, which is obtained from a suitable equivalent circuit model. The design process is based on optimization using electromagnetic simulator software, HFSS. A proposed partial H-plane band-pass filter has been designed and simulated to verify usefulness and performance of the design method.

In this paper, the design, simulation and fabrication of a filtering antenna is proposed. The filtering antenna structure is, therefore, framed by integrating elements, such as the feed line, parallel coupled resonators and the microstrip patch antenna array. The combined elements are designed for third order Chebyshev band pass filter with a pass band ripple of 0.1 dB and the integrated structure is more suitable for different S-band (2 GHz – 4 GHz) wireless applications. The equivalent circuit model for the proposed filtering antenna structure is analysed and the design procedure of the filter is also presented in detail. The 1x2 rectangular patch antenna array acts both as a radiating element and also as the last resonator of the band pass filter. The proposed filtering antenna structure results in high out-of-band rejection, enhanced bandwidth and a gain of about 209 MHz and 1.53 dB. The fabricated result agrees well with the simulation characteristics


Author(s):  
Darko Mitić ◽  
Goran Jovanović ◽  
Mile Stojčev ◽  
Dragan Antić

This paper considers design procedure of fast locking time self-tuning [Formula: see text] biquadratic band-pass filter with nonlinear sliding mode control. A sliding mode controller is building block of the phase control loop (PCL) involved to push central frequency to reach input signal frequency very fast, approximately 100–200[Formula: see text]ns. The sliding mode controller is realized by using a tunable delay line, enabling optimal filter locking time for different input signal frequencies. The filter possesses low sensitivity to component discrepancy and is applied as a selective amplifier. The 0.13[Formula: see text][Formula: see text]m SiGe BiCMOS technology has been utilized for design and verification of the presented filter. This filter has central frequency up to 220[Formula: see text]MHz, quality factor [Formula: see text] and 25[Formula: see text]dB gain.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Harish Kumar ◽  
MD. Upadhayay

UWB technology- (operating in broad frequency range of 3.1–10.6 GHz) based filter with WLAN notch has shown great achievement for high-speed wireless communications. To satisfy the UWB system requirements, a band pass filter with a broad pass band width, low insertion loss, and high stop-band suppression are needed. UWB filter with wireless local area network (WLAN) notch at 5.6 GHz and 3 dB fractional bandwidth of 109.5% using a microstrip structure is presented. Initially a two-transmission-pole UWB band pass filter in the frequency range 3.1–10.6 GHz is achieved by designing a parallel-coupled microstrip line with defective ground plane structure using GML 1000 substrate with specifications: dielectric constant 3.2 and thickness 0.762 mm at centre frequency 6.85 GHz. In this structure aλ/4 open-circuited stub is introduced to achieve the notch at 5.6 GHz to avoid the interference with WLAN frequency which lies in the desired UWB band. The design structure was simulated on electromagnetic circuit simulation software and fabricated by microwave integrated circuit technique. The measured VNA results show the close agreement with simulated results.


2019 ◽  
Vol 1 (1) ◽  
pp. 66-69
Author(s):  
Ayu Novira

Sound is a signal or wave that propagates with a certain frequency and amplitude through intermediary media that are delivered such as water, air and solid objects. Humans can communicate with other humans with sound. But the sound that is released by humans, musical instruments, or other objects does not always sound clear and good, some of the recorded sound has a lot of noise which makes the sound quality is disturbed and not good. The solution for making sound in an object better and cleaner is filtering. [2]. Filters can be interpreted as a circuit that passes a certain frequency band desired and dampens other frequency bands. Filters are divided into two types, namely analog filters and digital filters. According to the impulse response the digital filter is divided into two, namely the Infinite Impulse Filter (IIR) filter and the Finite Impulse Filter (FIR) filter. In this study a filtering process will be carried out on the sound of the guitar. The filter used is the Band Pass Filter, a filter that can be used to isolate or filter certain frequencies in a particular band or frequency range.


2021 ◽  
Author(s):  
Ara Abdulsatar Assim Assim

This paper demonstrates the design and implementation of an inductorless analog band-pass filter (BPF). Band-pass filters are widely used in communication systems, wireless transceivers and audio systems, they only pass signals within a desired frequency range. The principles mentioned in this article can be generalized to design any analog filter regardless of its order, approximation and prototype. The design procedure can be broken down into three main parts, first of all, a passive low-pass filter (LPF) is implemented, then the passive LPF is converted into a passive BPF. Finally, the passive BPF is transformed into an active BPF by adding operational amplifiers. The active BPF is then modified into two different topologies, the first in which the inductors are replaced with simulated- inductors (gyrators), while in the second topology, less operational amplifiers are used. <br>


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Masood Molimoli Hajamohideen ◽  
Sreeja Balakrishanapillai Suseela

Purpose The purpose of the study is – in Microwave filter design, the performances of passive components are deteriorated by parasitics at gigahertz (GHz) frequency range. A compact and multi-stack electromagnetic band gap (EBG) structure is proposed with improved stop band characteristics at GHz frequency range in this work. This paper proposes a new design for ultra wide band pass filter (resonator BPF) with periodically loaded one-dimensional EBG to achieve the harmonic suppression. This basic EBG structure is developed with combination of a signal strip and ground plane in the slotted section. The resonator BPF is loaded with one EBG, two EBG and three EBGs to improve the stop-band rejection. Design/methodology/approach The proposed filter is with multi-stack EBG cell for achieving good pass band and stop bands performance. Circuit model is analyzed in Section 2. Section 3 discuses band pass filter loaded with one EBG. In Sections 4 and 5, filter with two and three EBG loaded resonators are discussed, respectively. Section 6 is concluded with comparison of simulation and measured results. Findings The stop-band rejection is 20 dB, 40 dB and 50 dB, respectively, in the frequency range of 6 GHz to 20 GHz. The simulation analysis is carried out with advanced system design software. To validate the simulation results, proposed structure is fabricated, and results are found to be in good agreement. Originality/value This paper accounts for designing resonator BPF, which has slow wave pass band and stop band characteristics. Second and third harmonics are suppressed using multi-stack EBG. Various stacks with basic designs are proposed and improved results have been demonstrated which is open for future research.


2007 ◽  
Vol 98 (5) ◽  
pp. 2943-2955 ◽  
Author(s):  
Erik P. Cook ◽  
Jennifer A. Guest ◽  
Yong Liang ◽  
Nicolas Y. Masse ◽  
Costa M. Colbert

We examined how hippocamal CA1 neurons process complex time-varying inputs that dendrites are likely to receive in vivo. We propose a functional model of the dendrite-to-soma input/output relationship that combines temporal integration and static-gain control mechanisms. Using simultaneous dual whole cell recordings, we injected 50 s of subthreshold and suprathreshold zero-mean white-noise current into the primary dendritic trunk along the proximal 2/3 of stratum radiatum and measured the membrane potential at the soma. Applying a nonlinear system-identification analysis, we found that a cascade of a linear filter followed by an adapting static-gain term fully accounted for the nonspiking input/output relationship between the dendrite and soma. The estimated filters contained a prominent band-pass region in the 1- to 10-Hz frequency range that remained constant as a function of stimulus variance. The gain of the dendrite-to-soma input/output relationship, in contrast, varied as a function of stimulus variance. When the contribution of the voltage-dependent current Ih was eliminated, the estimated filters lost their band-pass properties and the gain regulation was substantially altered. Our findings suggest that the dendrite-to-soma input/output relationship for proximal apical inputs to CA1 pyramidal neurons is well described as a band-pass filter in the theta frequency range followed by a gain-control nonlinearity that dynamically adapts to the statistics of the input signal.


2004 ◽  
Vol 14 (03) ◽  
pp. 690-695
Author(s):  
A. GHORI ◽  
P. GHOSH

Operational Transconductance Amplifier (OTA) is an excellent current mode device suited very well for VLSI implementation. In this contribution we report realization of OTA using Silicon-On-Insulator (SOI) structure based MOSFETs and compared them to OTA designed with bulk MOSFET. SOI based OTA outperformed bulk MOSFET OTA giving close to 10 GHz improvement in high frequency f T . A band-pass filter was implemented with SOI based OTA with a center frequency of 7 GHz and a bandwidth of 480 kHz.


1984 ◽  
Vol 21 (1) ◽  
pp. 27-38
Author(s):  
J. P. Newsome

This tutorial paper outlines the design procedure and compares the response of three different forms of active band-pass filter circuit, which are designed to meet the same basic filter specification. The paper shows in particular how the response varies with the spread of operational amplifier gain-bandwidth product; this spread exists, in practice, amongst operational amplifiers of any given type.


2021 ◽  
Vol 6 (2) ◽  
pp. 52-57
Author(s):  
Fatimah Juma'a ◽  
Falih Alnahwi

In order to provide an efficient, low cost, and small size radiating structure that passes a certain frequency band with negligible amount of interference, the combination of filters and antennas is proposed to form a single element called filtenna. This paper presents a filtenna element with compact size that can radiates in the 5G mid-band frequency range (3.6-3.8 GHz) and perfectly rejects all the frequencies outside this range. The filtenna is composed of a printed circuit antenna that is terminated with a crescent shaped stub that is coupled electromagnetically with a miniaturized sharp band-pass filter. The simulation results show a filtenna reflection coefficient with a reduced value within the intended 5G band and with high values along the other unwanted frequencies. Moreover, the structure has an omnidirectional pattern with reasonable gain value within the band of interest, and this makes the antenna very suitable for portable 5G devices.


Sign in / Sign up

Export Citation Format

Share Document