scholarly journals Multiple processes of geochemical evolution for the alkaline rocks of Rio Bonito intrusive complex, Rio de Janeiro State, Brazil: 40Ar/39Ar and U-Pb ages and Lu-Hf isotopes on zircon and constraints on crustal signature

2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Daniel Adelino da Silva ◽  
Akihisa Motoki ◽  
Anderson Costa dos Santos ◽  
Julio Mendes ◽  
Fred Jourdan ◽  
...  

This article presents geochemical characteristics of the alkaline rocks of Rio Bonito intrusive complex, State of Rio de Janeiro, Brazil, which is constituted mainly by nepheline syenite. The fractional crystallisation of this magma decreases K2O/(Na2O + K2O) and increases (Na + K)/Al. The TiO2, Fe2O3*, MgO, CaO, and P2O5 contents indicate fractionation of titanite, ilmenite, and clinopyroxene or amphibole. The total rare earth elements (REEs) are high, and the REE pattern is linear with negative gradient. The nepheline syenite aplite has low REEs, concave REE pattern, and positive Eu anomaly. The ultrabasic and basic mela-nepheline syenite samples have total REEs and light REEs higher than the felsic alkaline rocks. Therefore, the nepheline syenite magma is not derived directly from the alkaline ultrabasic magma. Laser-spot step‑heating 40Ar/39Ar ages for biotite and amphibole are 65.03 ± 0.70 and 65.03 ± 0.46. U-Pb ages LA-ICP-MS for two samples are 65.49 ± 0.30 and 65.18 ± 0.30. Values of εHf are negative for both samples, indicating an important crustal component in the evolution of Rio Bonito.

2020 ◽  
Vol 47 (3) ◽  
pp. 119-142
Author(s):  
Roger H. Mitchell

Lamproite is a rare ultrapotassic alkaline rock of petrological importance as it is considered to be derived from metasomatized lithospheric mantle, and of economic significance, being the host of major diamond deposits. A review of the nomenclature of lamproite results in the recommendation that members of the lamproite petrological clan be named using mineralogical-genetic classifications to distinguish them from other genetically unrelated potassic alkaline rocks, kimberlite, and diverse lamprophyres. The names “Group 2 kimberlite” and “orangeite” must be abandoned as these rock types are varieties of bona fide lamproite restricted to the Kaapvaal Craton. Lamproites exhibit extreme diversity in their mineralogy which ranges from olivine phlogopite lamproite, through phlogopite leucite lamproite and potassic titanian richterite-diopside lamproite, to leucite sanidine lamproite. Diamondiferous olivine lamproites are hybrid rocks extensively contaminated by mantle-derived xenocrystic olivine. Currently, lamproites are divided into cratonic (e.g. Leucite Hills, USA; Baifen, China) and orogenic (Mediterranean) varieties (e.g. Murcia-Almeria, Spain; Afyon, Turkey; Xungba, Tibet). Each cratonic and orogenic lamproite province differs significantly in tectonic setting and Sr–Nd–Pb–Hf isotopic compositions. Isotopic compositions indicate derivation from enriched mantle sources, having long-term low Sm/Nd and high Rb/Sr ratios, relative to bulk earth and depleted asthenospheric mantle. All lamproites are considered, on the basis of their geochemistry, to be derived from ancient mineralogically complex K–Ti–Ba–REE-rich veins, or metasomes, in the lithospheric mantle with, or without, subsequent contributions from recent asthenospheric or subducted components at the time of genesis. Lamproite primary magmas are considered to be relatively silica-rich (~50–60 wt.% SiO2), MgO-poor (3–12 wt.%), and ultrapotassic (~8–12 wt.% K2O) as exemplified by hyalo-phlogopite lamproites from the Leucite Hills (Wyoming) or Smoky Butte (Montana). Brief descriptions are given of the most important phreatomagmatic diamondiferous lamproite vents. The tectonic processes which lead to partial melting of metasomes, and/or initiation of magmatism, are described for examples of cratonic and orogenic lamproites. As each lamproite province differs with respect to its mineralogy, geochemical evolution, and tectonic setting there is no simple or common petrogenetic model for their genesis. Each province must be considered as the unique expression of the times and vagaries of ancient mantle metasomatism, coupled with diverse and complex partial melting processes, together with mixing of younger asthenospheric and lithospheric material, and, in the case of many orogenic lamproites, with Paleogene to Recent subducted material.


2021 ◽  
Vol 19 (1) ◽  
pp. 29-39
Author(s):  
Young Ezenwa Obioha

Geochemistry of schists of Obudu area was carried out using ICP-MS and ICP-ES techniques in order to determine the geochemical evolution of the area. 40 samples were analyzed for their major, trace and REE composition. Field mapping revealed that gneisses, amphibolites and schists comprising migmatitic schists (MS), quartz-mica schists (QMS), garnet-mica schists (GMS), and hornblende biotite schists (HBS), intruded by granites, granodiorites, quartzofeldspathic rocks and dolerites occur in the area. Structural studies revealed that the schists trend approximately NE–SW (5 – 30o ) indicating the Pan-African event. Modal analysis revealed that the schists have average concentration of quartz (15vol.%), plagioclase (An45-19 vol.%), biotite (15vol.%), garnet (9.0vol.%) and muscovite (6vol.%), the remaining consists of accessory minerals. Geochemistry showed that all the schists have molecular Al2O3 > CaO+K2O+Na2O, indicating they are peraluminous metasedimentary pelites. Trace and REE element results show that all the analyzed schist samples are depleted in Hg, Ag, Be, Bi, and Sb below < 1.0ppm, but relatively enriched in Ba, Sr and Zr with average concentration of 996, 675.73, 243.13 ppm respective. The HREE are depleted with ΣHREE < 10.2, but the LREE are relatively enriched with ΣLREE > 289.54. The ΣLREE/ΣHREE ratio ranges from 9.17 to 33.4, with a large positive delta V at Eu. These findings indicate that the schists of Northwest Obudu area are highly fractionated and had attained at least the uppermost amphibolite metamorphic grade. The schists had contributed to the development of the Pan-African continent.


2007 ◽  
Vol 7 (10) ◽  
pp. 2661-2669 ◽  
Author(s):  
B. S. Gilfedder ◽  
M. Petri ◽  
H. Biester

Abstract. Iodine is an essential trace element for all mammals and may also influence climate through new aerosol formation. Atmospheric bromine cycling is also important due to its well-known ozone depletion capabilities. Despite precipitation being the ultimate source of iodine in the terrestrial environment, the processes effecting its distribution, speciation and transport are relatively unknown. The aim of this study was to determine the effect of orographically induced precipitation on iodine concentrations in snow and also to quantify the inorganic and organic iodine and bromine species. Snow samples were collected over an altitude profile (~840 m) from the northern Black Forest and were analysed by ion-chromatography - inductively coupled plasma mass spectrometry (IC-ICP-MS) for iodine and bromine species and trace metals (ICP-MS). All elements and species concentrations in snow showed significant (r2>0.65) exponential decrease relationships with altitude despite the short (5 km) horizontal distance of the transect. In fact, total iodine more than halved (38 to 13 nmol/l) over the 840 m height change. The results suggest that orographic lifting and subsequent precipitation has a major influence on iodine concentrations in snow. This orographically induced removal effect may be more important than lateral distance from the ocean in determining iodine concentrations in terrestrial precipitation. The microphysical removal process was common to all elements indicating that the iodine and bromine are internally mixed within the snow crystals. We also show that organically bound iodine is the dominant iodine species in snow (61–75%), followed by iodide. Iodate was only found in two samples despite a detection limit of 0.3 nmol/l. Two unknown but most likely anionic organo-I species were also identified in IC-ICP-MS chromatograms and comprised 2–10% of the total iodine. The majority of the bromine was inorganic bromide with a max. of 32% organo-Br.


2020 ◽  
Vol 103 (5) ◽  
pp. 1277-1281
Author(s):  
Tamer M A M Thabit ◽  
Shokr Abdelsalam Shokr ◽  
Dalia I H Elgeddawy ◽  
Medhat A H El-Naggar

Abstract Wheat and barley grains are two of the most important nutritional grains for humans and animals and they play an essential role in the nutritional cycle by different ratios according to people's nutritional habits. This work aimed to monitor ten of the most important heavy metals in some European-origin wheat and barley grains during the season of 2018. The measured elements, Al, As, Cd, Co, Cr, Hg, Mo, Ni, Pb, and V, are of importance ecologically and biologically and may be involved in many health disorders affecting the human body. Moisture, protein, and specific grain weights were checked. Samples were digested using microwave acid digestion and the elements measured with ICP-MS/MS in He mode to increase sensitivity, lower the background, and avoid interference. Method validation and verification were carried out through spiking at two levels (2.0 and 10 ppb), then RSD, LOD, and LOQ were calculated. Recoveries were &gt;97% for all elements at both levels with an RSD of &lt;7.6%. Results revealed that As, Cd, Hg, and Pb were not detected in most wheat and barley samples, whereas Cd was detected in one sample of Ukrainian wheat and two samples of Estonian barley (but in very small traces). Pb was detected in three samples of Polish wheat (in very small traces). Al, Mo, and Ni were detected in some samples of wheat and barley of all origins, whereas other elements were at very low levels considered to be negligible concentrations.


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 147 ◽  
Author(s):  
Allan Pring ◽  
Benjamin Wade ◽  
Aoife McFadden ◽  
Claire E. Lenehan ◽  
Nigel J. Cook

The nature of couple substitutions of minor and trace element chemistry of expitaxial intergrowths of wurtzite and sphalerite are reported. EPMA and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses display significant differences in the bulk chemistries of the two epitaxial intergrowth samples studied. The sample from the Animas-Chocaya Mine complex of Bolivia is Fe-rich with mean Fe levels of 4.8 wt% for wurztite-2H and 2.3 wt% for the sphalerite component, while the sample from Merelani Hills, Tanzania, is Mn-rich with mean Mn levels in wurztite-4H of 9.1 wt% and for the sphalerite component 7.9 wt% In both samples studied the wurtzite polytype is dominant over sphalerite. LA-ICP-MS line scans across the boundaries between the wurtzite and sphalerite domains within the two samples show significant variation in the trace element chemistries both between and within the two coexisting polytypes. In the Merelani Hills sample the Cu+ + Ga3+ = 2Zn2+ substitution holds across both the wurztite and sphalerite zones, but its levels range from around 1200 ppm of each of Cu and Ga to above 2000 ppm in the sphalerite region. The 2Ag+ + Sn4+ = 3Zn2+ coupled substitution does not occur in the material. In the Animas sample, the Cu+ + Ga3+ = 2Zn2+ substitution does not occur, but the 2(Ag,Cu)+ + Sn4+ = 3Zn2+ substitution holds across the sample despite the obvious growth zoning, although there is considerable variation in the Ag/Cu ratio, with Ag dominant over Cu at the base of the sample and Cu dominant at the top. The levels of 2(Ag,Cu)+ + Sn4+ = 3Zn2+ vary greatly across the sample from around 200 ppm to 8000 ppm Sn, but the higher values occur in the sphalerite bands.


2012 ◽  
Author(s):  
Elizabeth Kerpe Oliveira ◽  
Bernhard Bühn ◽  
José Marques Correia Neves ◽  
Alexandre de Oliveira Chaves ◽  
Mário Luiz de Sá Carneiro Chaves

Este trabalho abrange o estudo de química mineral e geocronologia U-Pb de grãos de monazita, composicionalmentehomogêneos, provenientes de várias jazidas explotadas pelas Indústrias Nucleares do Brasil (INB) em placers marinhos da região de Buena,litoral norte fluminense. A área está localizada na região da Bacia de Campos e, geologicamente, pertence à Província TectônicaMantiqueira, que representa um sistema orogênico neoproterozóico desenvolvido na borda sudeste do Cráton São Francisco. As idades UPbobtidas por LA-ICP-MS abrangem um intervalo entre 486 Ma e 579 Ma, sendo que as idades mais jovens são de grãos de monazitas ricosem cério. Por outro lado, as idades mais antigas correspondem a grãos de monazitas com tendência à composição cheralítica, nos quaisocorre um enriquecimento principalmente em CaO e ThO2. A comparação dessas idades com informações geológicas regionais permiteinferir as suítes G2 (granitos granada-biotita gnaisse foliado) e G3 (leucogranitos, não deformados, encaixados em G2) como rochas-fonteda população de monazita mais antiga, suítes estas relacionadas com o arco sin-colisional desenvolvido simultaneamente aometamorfismo e à deformação regional Neoproterozóica. Já a população de monazita mais jovem pode ser proveniente de corposgraníticos das suítes G4 (plútons magmáticos zonados) e G5 (ballons magmáticos), representantes das fases pós-colisionais.Palavras-chave: Monazita, quimica mineral, idades U-Pb, LA-ICP-MS. ABSTRACTMINERAL CHEMISTRY AND U-Pb AGES OF MONAZITE FROM MARINE PLACERS OF THE NORTHERN RIO DE JANEIRO STATE - Thisresearch focusses on mineral chemistry and U-Pb geochronology of monazite grains of homogeneous composition, originating from severalmarine-placer deposits exploited by Indústrias Nucleares do Brasil (INB), in Buena, northern Rio de Janeiro State. Buena is located close tothe Campos Basin and related to the geological context of the Mantiqueira Tectonic Province, which represents a neoproterozoic orogenicsystem developed in the southern edge of the São Francisco Craton. Uranium-Pb ages by LA-ICP-MS fall between 486 Ma and 579 Ma.Younger ages are related to Ce-rich monazite. Older ages correspond to monazite with cheralitic signature, chiefly enriched in CaO andThO2. These ages are interpreted in the geological context of the Mantiqueira Tectonic Province as rock sources for older monazites, whichare correlated to syn-collisional arc simultaneously developed together the neoproterozoic regional metamorphism and deformation. Theyounger monazites came from granitic plutons of G4 and G5 suites, related to post-collisional phases.Keywords: Monazite, mineral chemistry, U-Pb ages, LA-ICP-MS.


2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Ronaldo Irzon

Abstract Kulon Progo is located in the southern part of Yogyakarta Special Province, Indonesia. The regency is famous of some tourist beach points. This study discusses the compositiom of beach sand samples in three coastal areas in Kulon Progo: Karangwuni, Glagah, and Congot in relation to environmental issues. Seven samples of four locations were megascopically descripted and analyzed using XRF and ICP-MS for geochemistry contents. Four of samples are beach sands from the surface whilst the others were collected from about 50 cm below surface. Box plots show maximum Cr outlier and minimum most of REE outliers in the group of beach sand samples. Nickel and chrome tenor anomalies were detected in samples from coastline of Karangwuni and Glagah. On the other hand, no Ni and Cr anamalies were indentified in the two samples 200 m from the seashore of Karangwuni nor the two samples near Congot seashore. In the polluted location, the two heavy metals are relatively concentrated in the surface. Two volcanic rock samples from the Andesite domain are selected to trace the origin of the heavy metals. The wastes of basic metal mining in northern Kulon Progo together with urban activities and several industries in Wates were then transported through the Serang River to Indian Ocean. Tidal currents helps the heavy metals to be deposited in the coastal areas near the mouth of Serang River. This study also concluded that folk gold mining activity in Sangon is not the source of Ni and Cr pollution to the coast of Kulon Progo.Keyword: geochemistry, beach sand, Kulon Progo, heavy metals pollution. Sari Kulon Progo berlokasi di bagian selatan Provinsi Daerah Istimewa Jakarta, Indonesia. Kabupaten ini terkenal dengan beberapa lokasi wisata pantai. Studi ini membahas mengenai komposisi pasir pantai pada tiga lokasi pantai di Kulon Progo: Karangwuni, Glagah, dan Congot terkait dengan masalah lingkungan. Tujuh contoh dari empat lokasi penelitian telah dideskripsikan secara megaskopis dan dianalisis kandungan geokimianya menggunakan XRF dan ICP-MS. Empat contoh merupakan pasir pantai yang berasal dari permukaan sedangkan contoh lain berasal dari 50 cm di bawah permukaan. Box plot dengan jelas menunjukkan keberadaan maximum outlier pada Cr dan minimum ourlier pada banyak elemen dari REE pada kelompok contoh pasir pantai. Anomali tinggi nikel dan krom terdeteksi pada seluruh contoh yang berada dekat tepi pantai di Karangwuni dan Glagah. Namun demikian, tidak terdapat anomali Ni dan Cr pada dua contoh yang berasal dari 200 m sebelum tepi pantai Karangwuni maupun dua contoh dari Pantai Congot. Pada titik yang tercemar polusi, dua logam berat ini lebih terkonsentrasi pada bagian permukaan. Dua batuan vulkanik dari wilayah Andesit dipilih dalam menelusuri asal muasal logam berat tersebut. Sampah sisa penambangan logam dasar bersama dengan aktifitas perkotaan dan industri di Kulon Progo telah terbawa oleh aliran Sungai Serang menuju Samudera Hindia. Arus bolak-balik air laut membantu logam berat tersebut terdepositkan di wilayah pantai dekat dengan mulut Sungai Serang. Studi ini turut menyimpulkan bahwa penambangan emas rakyat di Sangon bukan sebagai sumber pencemaran Ni dan Cr di tepi pantai Kulon ProgoKata kunci: geokimia, pasir pantai, Kulon Progo, polusi logam berat


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 239
Author(s):  
Taotao Yan ◽  
Dongsheng Liu ◽  
Chen Si ◽  
Yu Qiao

Constraining the duration of magmatism is of vital importance to the understanding of the magmatic-hydrothermal mineral system. The Bozhushan batholith, located in the middle section of the southeastern Yunnan ore district, mainly consists of biotite monzogranite and monzogranite. Many Sn–W–polymetallic deposits are developed around the Bozhushan batholith, but their temporal and genetic relationships remain controversial. LA-ICP-MS U–Pb zircon and monazite dating were respectively conducted on the same two samples, yielding weighted mean 206Pb/238U zircon ages of 85.1 ± 0.7 and 85.6 ± 0.9 Ma, and weighted mean 206Pb/238U monazite ages of 87.1 ± 0.9 and 88.1 ± 1.1 Ma. The crystallization ages of S-type granites obtained from the zircon U–Th–Pb system and monazite U–Th–Pb system are consistent within the analytical errors. After combining the new ages obtained in this study with recently published U–Pb zircon and cassiterite ages from the giant Baniuchang Ag–Sn–Pb–Zn deposit in the north, and U–Pb zircon and Re-Os molybdenite ages from the large Guanfang W deposit in the south, a temporal framework of magmatism-mineralization in the Bozhushan region has been established. The duration of magmatic activity at Bozhushan is about 7 Ma, with W mineralization occurring at ca. 92 Ma and Sn mineralization at 88–87 Ma.


Sign in / Sign up

Export Citation Format

Share Document