Abstract 56: Ventilation Is Necessary During Cardiopulmonary Resuscitation In A Rat Model Of Cardiac Arrest Induced By Airway Obstruction

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Akihide Kurita ◽  
Takumi Taniguchi ◽  
Ken Yamamoto

Recent studies have showed that hypoventilation during cardiopulmonary resuscitation (CPR) improved the rates of return of spontaneous circulation (ROSC) and prognosis. However, there are few studies about the ventilation strategies during CPR in cardiac arrest caused by airway obstruction. To compare the effects of the three ventilation strategies during CPR in an animal model of cardiac arrest induced by airway obstruction, we investigated the rates of ROSC, survival rates, plasma cytokine levels, and lactate levels. thirty-six male Sprague Dawley rats were anesthetized with intraperitoneal injection of pentobarbital. Cardiac arrest was induced by airway obstruction. After 3 minutes of cardiac arrest, animals were randomized to receive one of the three ventilation strategies during CPR (n = 12 per group): normoventiraion (28 breaths/min), hypoventilation (14 breaths/min), or no-ventilation. The rates of chest compression (CC) was 240 –260 compressions/min and the depth of CC adjusted to maintain mean arterial pressure more than 25 mmHg in all groups. After 5 minutes of CPR, epinephrine (0.02 mg/kg) was administered, and all rats were ventilated at the rates of 28 breaths/min in FiO2 1.0. The rates of ROSC were 83%, 58%, 0% for the normoventilation, hypoventilation, and no-ventilation groups, respectively. The PaCO2 levels immediately after ROSC were 74mmHg and 88 mmHg for the normoventilation, and hypoventilation groups, respectively. The increases of plasma cytokine (TNF-a, and IL-6) levels and lactate levels after ROSC in the normoventilation group were significantly less than those in the hypoventilation group. The present study showed that normoventilation during CPR improved the rates of ROSC and the survival rates after ROSC in the animal cardiac arrest model induced by airway obstruction. Moreover, normoventilation attenuated the elevation of cytokine and lactate responses. These findings suggest that ventilation may be necessary during CPR in cardiac arrest caused by airway obstruction.

2014 ◽  
Vol 34 (10) ◽  
pp. e1-e8 ◽  
Author(s):  
Vélvá M Combs ◽  
Heather D Crispell ◽  
Kelly L Drew

Stimulation of N-methyl-D-aspartate receptors (NMDAR) contributes to regenerative neuroplasticity following the initial excitotoxic insult during cerebral ischemia. Stimulation of NMDAR with the partial NMDAR agonist D-cycloserine (DCS) improves outcome and restores hippocampal synaptic plasticity in models of closed head injury. We thus hypothesized that DCS would improve outcome following restoration of spontaneous circulation (ROSC) from cardiac arrest (CA). DCS (10 mg/kg, IP) was administered to Sprague-Dawley rats (male, 250–330 g; 63–84 days old) 24 and 48 hours after 6 or 8 minutes of asphyxial CA. Heart rate and blood pressure declined similarly in all groups. Animals showed neurological deficits after 6 and 8 minutes CA ( P < 0.05, Tukey) and these deficits recovered more quickly after 6 minutes than after 8 minutes of CA. CA decreased the number of healthy neurons within CA1 with no difference between 6 and 8 minutes duration of CA (180.8 ± 27.6 (naïve, n = 5) versus 46.3 ± 33.8 (all CA groups, n = 27) neurons per mm CA1). DCS had no effect on neurological deficits or CA1 hippocampal cell counts ( P > 0.05, Tukey).


Acta Medica ◽  
2021 ◽  
pp. 1-7
Author(s):  
Alp Şener ◽  
Gül Pamukçu Günaydın ◽  
Fatih Tanrıverdi

Objective: In cardiac arrest cases, high quality cardiopulmonary resuscitation and effective chest compression are vital issues in improving survival with good neurological outcomes. In this study, we investigated the effect of mechanical chest compression devices on 30- day survival in out-of-hospital cardiac arrest. Materials and Methods: This retrospective case-control study was performed on patients who were over 18 years of age and admitted to the emergency department for cardiac arrest between January 1, 2016 and January 15, 2018. Manual chest compression was performed to the patients before January 15, 2017, and mechanical chest compression was performed after this date. Return of spontaneous circulation, hospital discharge, and 30-day survival rates were compared between the groups of patients in terms of chest compression type. In this study, the LUCAS-2 model piston-based mechanical chest compression device was used for mechanical chest compressions. Results: The rate of return of spontaneous circulation was significantly lower in the mechanical chest compression group (11.1% vs 33.1%; p < 0.001). The 30-day survival rate was higher in the manual chest compression group (6.8% vs 3.7%); however, this difference was not statistically significant (p = 0.542). Furthermore, 30-day survival was 0% in the trauma group and 0.6% in the patient group who underwent cardiopulmonary resuscitation for over 20 minutes. Conclusion: It can be seen that the effect of mechanical chest compression on survival is controversial; studies on this issue should continue and, furthermore, studies on the contribution of mechanical chest compression on labor loss should be conducted.


2016 ◽  
Vol 24 (0) ◽  
Author(s):  
Renata Maria de Oliveira Botelho ◽  
Cássia Regina Vancini Campanharo ◽  
Maria Carolina Barbosa Teixeira Lopes ◽  
Meiry Fernanda Pinto Okuno ◽  
Aécio Flávio Teixeira de Góis ◽  
...  

ABSTRACT Objective: to compare the rate of return of spontaneous circulation (ROSC) and death after cardiac arrest, with and without the use of a metronome during cardiopulmonary resuscitation (CPR). Method: case-control study nested in a cohort study including 285 adults who experienced cardiac arrest and received CPR in an emergency service. Data were collected using In-hospital Utstein Style. The control group (n=60) was selected by matching patients considering their neurological condition before cardiac arrest, the immediate cause, initial arrest rhythm, whether epinephrine was used, and the duration of CPR. The case group (n=51) received conventional CPR guided by a metronome set at 110 beats/min. Chi-square and likelihood ratio were used to compare ROSC rates considering p≤0.05. Results: ROSC occurred in 57.7% of the cases, though 92.8% of these patients died in the following 24 hours. No statistically significant difference was found between groups in regard to ROSC (p=0.2017) or the occurrence of death (p=0.8112). Conclusion: the outcomes of patients after cardiac arrest with and without the use of a metronome during CPR were similar and no differences were found between groups in regard to survival rates and ROSC.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Sandra Högler ◽  
Ursula Teubenbacher ◽  
Wolfgang Weihs ◽  
Fritz Sterz ◽  
Ingrid A M Magnet ◽  
...  

Background: Evolution of histological lesions in selectively vulnerable brain regions in animal models of cardiac arrest (CA)give evidence of potential therapeutic windows. Delayed cell death is of special interest in this regard. Methods: In male Sprague-Dawley rats (350g) ventricular fibrillation (VF) CA was induced for 6 min followed by chest compressions, ventilation and drugs for 2 min. To achieve return of spontaneous circulation animals were defibrillated every 2 min. Animals were sacrificed after one week (n=5) or two weeks (n=7) of survival and compared to four sham animals. Brains were fixed in formalin, embedded in paraffin wax and cut into 3 μm thick coronary sections for histological examination. Viable neurons with nucleolus were counted in Hematoxylin-Eosin (HE)-stained sections in a 250 μm sector of the medial CA1 region. FluoroJade B staining was applied to count dying neurons in the same sector. Results: In HE-staining sham animals had 31±4 viable neurons. In one week survivors 11±9 viable neurons (p=0.003) and in two week survivors 7±7 viable neurons (p=0.001 vs sham, p=0.49 vs one week survivors) were counted. Furthermore, a lot of degenerated hypereosinophilic neurons were present in HE-staining in both CA-groups. FluoroJade B-staining was negative in sham animals. In one week survivors 29±8 dying neurons (p=0.006) and in two week survivors 33±13 dying neurons (p= 0.016 vs sham, p=0.343 vs one week survivors) were detectable. Conclusions: Consistent damage in the medial CA1 region was present after 6 min VFCA in both survival time groups. Lesions seemed to be constant, with no significant differences between time points. Contrary to expectations, FluoroJade B-staining was still positive after two weeks of survival, suggesting that delayed cell death might go on for a longer time period than assumed so far.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Anne Brücken ◽  
Christian Bleilevens ◽  
Matthias Derwall ◽  
Michael Fries

Introduction: Precordial compressions during cardiac arrest (CA) increase pulmonary vascular resistance (PVR), potentially impeding survival by limiting left ventricular preload. Although used as selective pulmonary vasodilator there is accumulating evidence that inhaled nitric oxide (iNO) also attenuates I/R injury. Hypothesis: Applying iNO during cardiopulmonary resuscitation (CPR) increases resuscitation rates and improves functional outcome after cardiac arrest in rats. Methods: Thirty male Sprague-Dawley rats were subjected to 10 mins of CA and 3 mins of CPR. Animals were randomized to receive either 20 ppm or 40 ppm iNO during CPR until 30 mins after ROSC (return of spontaneous circulation) or no iNO treatment. For all animals a neurological deficit score (NDS) was calculated daily for seven days following the experiment. Results: Inhalation of 20 ppm iNO increased ROSC rates in comparison to animals treated with 40 ppm or without iNO treatment, however this failed to reach statistical significance (control: 7/10; 20ppm iNO: 10/10; 40ppm iNO 6/10). 20 ppm iNO significantly decreased time to ROSC, resulting in a significant reduction of post-arrest lactate levels. Also, significantly higher mean arterial pressures in comparison to control animals were observed. Furthermore, 20 ppm iNO resulted in a significantly higher seven-day-survival in comparison to controls (control: 4/10; 20 ppm iNO: 10/10). All iNO treated animals showed better neurological outcomes, being significant in animals treated with 20 ppm iNO on postoperative day 2- 7. Conclusions: Our study demonstrates that 20 ppm but not 40 ppm iNO during CPR significantly decreases time to ROSC. Furthermore, significantly better seven-day-survival and neurological outcome was noted for 20 ppm iNO in comparison to controls.


Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 270
Author(s):  
Viviane Zotzmann ◽  
Corinna N. Lang ◽  
Xavier Bemtgen ◽  
Markus Jaeckel ◽  
Annabelle Fluegler ◽  
...  

Introduction: Extracorporeal cardiopulmonary resuscitation (ECPR) might be a lifesaving therapy for patients with cardiac arrest and no return of spontaneous circulation during advanced life support. However, even with ECPR, mortality of these severely sick patients is high. Little is known on the exact mode of death in these patients. Methods: Retrospective registry analysis of all consecutive patients undergoing ECPR between May 2011 and May 2020 at a single center. Mode of death was judged by two researchers. Results: A total of 274 ECPR cases were included (age 60.0 years, 47.1% shockable initial rhythm, median time-to-extracorporeal membrane oxygenation (ECMO) 53.8min, hospital survival 25.9%). The 71 survivors had shorter time-to-ECMO durations (46.0 ± 27.9 vs. 56.6 ± 28.8min, p < 0.01), lower initial lactate levels (7.9 ± 4.5 vs. 11.6 ± 8.4 mg/dL, p < 0.01), higher PREDICT-6h (41.7 ± 17.0% vs. 25.3 ± 19.0%, p < 0.01), and SAVE (0.4 ± 4.8 vs. −0.8 ± 4.4, p < 0.01) scores. Most common mode of death in 203 deceased patients was therapy resistant shock in 105/203 (51.7%) and anoxic brain injury in 69/203 (34.0%). Comparing patients deceased with shock to those with cerebral damage, patients with shock were significantly older (63.2 ± 11.5 vs. 54.3 ± 16.5 years, p < 0.01), more frequently resuscitated in-hospital (64.4% vs. 29.9%, p < 0.01) and had shorter time-to-ECMO durations (52.3 ± 26.8 vs. 69.3 ± 29.1min p < 0.01). Conclusions: Most patients after ECPR decease due to refractory shock. Older patients with in-hospital cardiac arrest might be prone to development of refractory shock. Only a minority die from cerebral damage. Research should focus on preventing post-CPR shock and treating the shock in these patients.


Author(s):  
Valentine Baert ◽  
◽  
Deborah Jaeger ◽  
Hervé Hubert ◽  
Jean-Baptiste Lascarrou ◽  
...  

Abstract Background The COVID-19 outbreak requires a permanent adaptation of practices. Cardiopulmonary resuscitation (CPR) is also involved and we evaluated these changes in the management of out-of-hospital cardiac arrest (OHCA). Methods OHCA of medical origins identified from the French National Cardiac Arrest Registry between March 1st and April 31st 2020 (COVID-19 period), were analysed. Different resuscitation characteristics were compared with the same period from the previous year (non-COVID-19 period). Results Overall, 1005 OHCA during the COVID-19 period and 1620 during the non-COVID-19 period were compared. During the COVID-19 period, bystanders and first aid providers initiated CPR less frequently (49.8% versus 54.9%; difference, − 5.1 percentage points [95% CI, − 9.1 to − 1.2]; and 84.3% vs. 88.7%; difference, − 4.4 percentage points [95% CI, − 7.1 to − 1.6]; respectively) as did mobile medical teams (67.3% vs. 75.0%; difference, − 7.7 percentage points [95% CI, − 11.3 to − 4.1]). First aid providers used defibrillators less often (66.0% vs. 74.1%; difference, − 8.2 percentage points [95% CI, − 11.8 to − 4.6]). Return of spontaneous circulation (ROSC) and D30 survival were lower during the COVID-19 period (19.5% vs. 25.3%; difference, − 5.8 percentage points [95% CI, − 9.0 to − 2.5]; and 2.8% vs. 6.4%; difference, − 3.6 percentage points [95% CI, − 5.2 to − 1.9]; respectively). Conclusions During the COVID-19 period, we observed a decrease in CPR initiation regardless of whether patients were suspected of SARS-CoV-2 infection or not. In the current atmosphere, it is important to communicate good resuscitation practices to avoid drastic and lasting reductions in survival rates after an OHCA.


2021 ◽  

Introduction: Understanding the key factors which affect out hospital cardiac arrest (OHCA) outcomes is essential in order to promote patient treatment. The main objective of this research was to describe the correlations between the capnographic values obtained during the first minute of monitoring on cardiopulmonary resuscitation, assisted by basic life-support units, with the results as return of spontaneous circulation (ROSC) and alive hospital admission. The secondary objectives were to describe the sociodemographic characteristics of the patients assisted, and to analyze any correlations between receiving basic life-support units and/or defibrillation prior to the arrival of basic life-support units, and the results of the cardiopulmonary resuscitation maneuvers. Methods: A prospective, descriptive, observational study of adult non-traumatic out hospital cardiac arrest patients was conducted. The patients were initially assisted by basic life-support units on the island of Mallorca, with one minute of initial capnography monitoring. Results: From July 2018 to March 2020, fifty-nine patients meeting the inclusion criteria were assisted, 76% were men and their mean age was 64.45 (±15.07) years old. The number of emergency lifesaving technicians who participated in the study was 58, they had a mean work experience of 14.05 (±6.7) years. Thirty-seven (63.7%) patients underwent basic life-support by bystanders and in 91.5% of cases the semi-automatic external defibrillator was used. Capnometry values during the first minute were obtained in 34 (58.6%) patients, their mean values were 22 (±19.07) mmHg, 35.5% of patients had values <10 mmHg. In 25.4% of the patients, spontaneous circulation returned during cardiopulmonary resuscitation, and 18.6% were admitted to hospital alive. Conclusion: No correlations were found between initial capnography values scoring above or below 10 mmHg and survival, however, basic life-support maneuvers, and defibrillation by bystanders and first responders, did correlate with survival rates. The average patient assisted in out of hospital cardiac arrest by the basic life-support units sampled was an adult male aged over 65 years.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tongyi Hu ◽  
Jianjie Wang ◽  
Shuangwei Wang ◽  
Jingru Li ◽  
Bihua Chen ◽  
...  

Abstract Cardiac arrest leads to sudden cessation of oxygen supply and cerebral hypoxia occurs when there is not sufficient oxygen supplied to the brain. Current Guidelines for adult cardiopulmonary resuscitation (CPR) and emergency cardiovascular care recommend the use of 100% oxygen during resuscitative efforts to maximize the probability of achieving the return of spontaneous circulation (ROSC). However, the optimal strategy for oxygen management after ROSC is still debatable. The aim of the present study was to evaluate the effects of the duration of post-resuscitation hyperoxic ventilation on neurological outcomes in asphyxial cardiac arrest rats treated with targeted temperature management (TTM). Asphyxia was induced by blocking the endotracheal tube in 80 adult male Sprague-Dawley rats. CPR begun after 7 min of untreated cardiac arrest. Animals were randomized to either the normoxic control under normothermia (NNC) group or to one of the 4 experimental groups (n = 16 each) immediately after ROSC: ventilated with 100% oxygen for 0 (O2_0h), 1 (O2_1h), 3 (O2_3h), or 5 (O2_5h) h and ventilated with room air thereafter under TTM. Physiological variables were recorded at baseline and during the 6 h postresuscitation monitoring period. Animals were closely observed for 96 h to assess neurologic recovery and survival. There were no significant differences in baseline measurements between groups, and all animals were successfully resuscitated. There were significant interactions between the duration of 100% oxygen administration and hemodynamics as well as, myocardial and cerebral injuries. Among all the durations of hyperoxic ventilation investigated, significantly lower neurological deficit scores and higher survival rates were observed in the O2_3h group than in the NNC group. In conclusion, postresuscitation hyperoxic ventilation leads to improved PaO2, PaCO2, hemodynamic, myocardial and cerebral recovery in asphyxial cardiac arrest rats treated with TTM. However, the beneficial effects of high concentration-oxygen are duration dependent and ventilation with 100% oxygen during induced hypothermia contributes to improved neurological recovery and survival after 96 h.


2019 ◽  
Vol 35 (5) ◽  
Author(s):  
Ali Yurtseven ◽  
Caner Turan ◽  
Funda Karbek Akarca ◽  
Eylem Ulaş Saz

Objectives: Nights and weekends represent a potentially high-risk time for pediatric cardiac arrest (CA) patients in emergency departments. Data regarding night or weekend arrest and its impact on outcomes is controversial. The purpose of this study was to determine the relationship between cardiopulmonary resuscitation during the various emergency department shifts and survival to discharge. Methods: We conducted a retrospective, observational study of patients who had visited our Emergency Department for CAs from January 2014 to December 2016. Medical records and patient characteristics of 67 children with CA were retrieved from patient admission files. Results: The mean age was 54.7±7.3 months and 59% were male. Rates of survival to discharge 35% (11/31) within working hours’ vs. out of working hours 3% (1/36). Among the CAs presenting to the emergency department, the survival rates were higher for working hours than for non-working hours (OR: 37.6 (2.62-539.7), p: 008). The rate of return of spontaneous circulation within working hours was higher than that of non-working hours (71% vs.19%) (p<0.001). Patients who received chest compression for more than 10 minutes had the lowest survival rate (2%) (p<0.001), whereas better outcome was associated with in-hospital CA, younger age (less than 12 months) and respiratory failure. Conclusion: Survival rates from pediatric CAs were significantly lower during non-working hours. Poor outcome was associated with prolonged cardiopulmonary resuscitation, out of hospital CA and older age. doi: https://doi.org/10.12669/pjms.35.5.487 How to cite this:Yurtseven A, Turan C, Akarca FK, Saz EU. Pediatric cardiac arrest in the emergency department: Outcome is related to the time of admission. Pak J Med Sci. 2019;35(5):---------. doi: https://doi.org/10.12669/pjms.35.5.487 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Sign in / Sign up

Export Citation Format

Share Document