Abstract MP42: T Cell Deletion Normalizes Sex Differences Of Blood Pressure But Not Renal Damage In Dahl Salt-sensitive Rats

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Justine M Abais-Battad ◽  
Hayley Lund ◽  
John Henry Dasinger ◽  
Daniel J Fehrenbach ◽  
David L Mattson

The immune system has a clear role in the development of hypertension and renal damage in male Dahl salt-sensitive (SS) rats, but far less is known about this phenotype in females, especially in regard to the contribution of immune-related mechanisms. The current study examined the hypertensive and kidney injury phenotype in response to a 3 week high salt challenge (HS, 4.0% NaCl, AIN-76A) in female versus male SS rats (n>10/group). Measured via radiotelemetry, there was no difference in low salt (LS, 0.4% NaCl) mean arterial pressure (MAP) between females and males (129±2 vs 124±2 mmHg, respectively). However, after 3 weeks of HS, females had a significant attenuation in the development of hypertension compared to males (161±3 vs 177±7 mmHg). This coincided with significantly less renal damage, evident by markedly reduced albuminuria (105±16 vs 183±16 mg/day) and medullary protein cast formation (7.0±0.7 vs 14.6±1.1%) in the females. Assessed via flow cytometry, there were fewer CD45+ total leukocytes (48% reduction), CD3+ T cells (51%), CD45R+ B cells (73%), and CD11b/c+ monocytes/macrophages (47%) in female versus male kidneys. To interrogate the contribution of adaptive immunity, specifically T cells, to the development of this sex difference, the same parameters were investigated in female and male SS CD247-/- rats which lack CD3+ T cells. The absence of functional T cells significantly reduced blood pressure in both females (147±6 vs 161±3 mmHg; SS CD247-/- vs SS) and males (157±8 vs 177±7 mmHg) after 3 weeks of HS, with no statistical difference between female and male SS CD247-/- rats. While a reduction in albuminuria (females: 37±12 vs 105±16 mg/day; males: 88±13 vs 183±16 mg/day, SS CD247-/- vs SS) and medullary protein cast formation (females: 1.8±0.4 vs 7.0±0.7%; males: 9.1±0.7 vs 14.6±1.1%) was observed in SS CD247-/- versus SS rats regardless of sex, there was greater protection from these measures of kidney damage in SS CD247-/- female versus SS CD247-/- males. Together, our data indicate that female SS rats are significantly protected from high salt-induced hypertension and renal disease compared to males rats. The deletion of T cells normalized high salt blood pressure between male and female rats but sex differences in renal damage still persisted.

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Wararat Kittikulsuth ◽  
David M Pollock

Endothelin B (ET B ) receptors mediate vasodilation, anti-inflammation and natriuresis, which ultimately contribute to blood pressure control. We previously showed that renal medullary ET B receptor function is maintained in female angiotensin (Ang) II hypertensive rats, while male Ang II hypertensive rats have blunted ET B -induced natriuretic responses. Because female rats are more resistance to blood pressure elevation induced by high salt intake and/or Ang II infusion, we hypothesized that ET B receptors protect female rats against the hypertensive response and renal injury induced by a high salt diet and chronic Ang II infusion compared to males. Male and female rats received Ang II infusion (150 ng/kg/min; sc.) with 4% NaCl for 4 weeks; blood pressure was measured by telemetry. After a week of Ang II infusion with a high salt diet, subsets of both male and female rats received the ET B antagonist, A-192621, at three doses on consecutive weeks (1, 3, and 10 mg/kg/d in food). Male rats had a significantly higher blood pressure compared to females after 4 weeks of Ang II (178±10 vs. 138±10 mmHg; p<0.05). A-192621 resulted in a dose-dependent increase in blood pressure in female Ang II hypertensive rats (167±8 mmHg at 10 mg/kg/d; p<0.05); the increase produced by A-192621 in male Ang II hypertensive rats was not statistically significant (193±10 mmHg). After 4 weeks of Ang II infusion, the level of proteinuria and nephrinuria was higher in male rats compared to female. A-192621 did not further increase urinary excretion of protein or nephrin in both male and female Ang II hypertensive rats. In conclusion, these results support the hypothesis that ET B receptors provide more protection against hypertension during chronic Ang II infusion in female rats compared to male.


2021 ◽  
pp. svn-2020-000834
Author(s):  
Koteswara Rao Nalamolu ◽  
Bharath Chelluboina ◽  
Casimir A Fornal ◽  
Siva Reddy Challa ◽  
David M Pinson ◽  
...  

Background and purposeThe therapeutic potential of different stem cells for ischaemic stroke treatment is intriguing and somewhat controversial. Recent results from our laboratory have demonstrated the potential benefits of human umbilical cord blood-derived mesenchymal stem cells (MSC) in a rodent stroke model. We hypothesised that MSC treatment would effectively promote the recovery of sensory and motor function in both males and females, despite any apparent sex differences in post stroke brain injury.MethodsTransient focal cerebral ischaemia was induced in adult Sprague-Dawley rats by occlusion of the middle cerebral artery. Following the procedure, male and female rats of the untreated group were euthanised 1 day after reperfusion and their brains were used to estimate the resulting infarct volume and tissue swelling. Additional groups of stroke-induced male and female rats were treated with MSC or vehicle and were subsequently subjected to a battery of standard neurological/neurobehavioral tests (Modified Neurological Severity Score assessment, adhesive tape removal, beam walk and rotarod). The tests were administered at regular intervals (at days 1, 3, 5, 7 and 14) after reperfusion to determine the time course of neurological and functional recovery after stroke.ResultsThe infarct volume and extent of swelling of the ischaemic brain were similar in males and females. Despite similar pathological stroke lesions, the clinical manifestations of stroke were more pronounced in males than females, as indicated by the neurological scores and other tests. MSC treatment significantly improved the recovery of sensory and motor function in both sexes, and it demonstrated efficacy in both moderate stroke (females) and severe stroke (males).ConclusionsDespite sex differences in the severity of post stroke outcomes, MSC treatment promoted the recovery of sensory and motor function in male and female rats, suggesting that it may be a promising treatment for stroke.


2021 ◽  
Vol 22 (7) ◽  
pp. 3762
Author(s):  
Sarah M. Kedziora ◽  
Kristin Kräker ◽  
Lajos Markó ◽  
Julia Binder ◽  
Meryam Sugulle ◽  
...  

Preeclampsia (PE) is characterized by the onset of hypertension (≥140/90 mmHg) and presence of proteinuria (>300 mg/L/24 h urine) or other maternal organ dysfunctions. During human PE, renal injuries have been observed. Some studies suggest that women with PE diagnosis have an increased risk to develop renal diseases later in life. However, in human studies PE as a single cause of this development cannot be investigated. Here, we aimed to investigate the effect of PE on postpartum renal damage in an established transgenic PE rat model. Female rats harboring the human-angiotensinogen gene develop a preeclamptic phenotype after mating with male rats harboring the human-renin gene, but are normotensive before and after pregnancy. During pregnancy PE rats developed mild tubular and glomerular changes assessed by histologic analysis, increased gene expression of renal damage markers such as kidney injury marker 1 and connective-tissue growth factor, and albuminuria compared to female wild-type rats (WT). However, four weeks postpartum, most PE-related renal pathologies were absent, including albuminuria and elevated biomarker expression. Only mild enlargement of the glomerular tuft could be detected. Overall, the glomerular and tubular function were affected during pregnancy in the transgenic PE rat. However, almost all these pathologies observed during PE recovered postpartum.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ming Song ◽  
Fang Yuan ◽  
Xiaohong Li ◽  
Xipeng Ma ◽  
Xinmin Yin ◽  
...  

Abstract Background Inadequate copper intake and increased fructose consumption represent two important nutritional problems in the USA. Dietary copper-fructose interactions alter gut microbial activity and contribute to the development of nonalcoholic fatty liver disease (NAFLD). The aim of this study is to determine whether dietary copper-fructose interactions alter gut microbial activity in a sex-differential manner and whether sex differences in gut microbial activity are associated with sex differences in hepatic steatosis. Methods Male and female weanling Sprague-Dawley (SD) rats were fed ad libitum with an AIN-93G purified rodent diet with defined copper content for 8 weeks. The copper content is 6 mg/kg and 1.5 mg/kg in adequate copper diet (CuA) and marginal copper diet (CuM), respectively. Animals had free access to either deionized water or deionized water containing 10% fructose (F) (w/v) as the only drink during the experiment. Body weight, calorie intake, plasma alanine aminotransferase, aspartate aminotransferase, and liver histology as well as liver triglyceride were evaluated. Fecal microbial contents were analyzed by 16S ribosomal RNA (16S rRNA) sequencing. Fecal and cecal short-chain fatty acids (SCFAs) were determined by gas chromatography-mass spectrometry (GC-MS). Results Male and female rats exhibit similar trends of changes in the body weight gain and calorie intake in response to dietary copper and fructose, with a generally higher level in male rats. Several female rats in the CuAF group developed mild steatosis, while no obvious steatosis was observed in male rats fed with CuAF or CuMF diets. Fecal 16S rRNA sequencing analysis revealed distinct alterations of the gut microbiome in male and female rats. Linear discriminant analysis (LDA) effect size (LEfSe) identified sex-specific abundant taxa in different groups. Further, total SCFAs, as well as, butyrate were decreased in a more pronounced manner in female CuMF rats than in male rats. Of note, the decreased SCFAs are concomitant with the reduced SCFA producers, but not correlated to hepatic steatosis. Conclusions Our data demonstrated sex differences in the alterations of gut microbial abundance, activities, and hepatic steatosis in response to dietary copper-fructose interaction in rats. The correlation between sex differences in metabolic phenotypes and alterations of gut microbial activities remains elusive.


Author(s):  
Olga Wronikowska ◽  
Maria Zykubek ◽  
Łukasz Kurach ◽  
Agnieszka Michalak ◽  
Anna Boguszewska-Czubara ◽  
...  

Abstract Rationale Mephedrone is a frequently overused drug of abuse that belongs to the group of novel psychoactive substances. Although its mechanism of action, as well as toxic and psychoactive effects, has been widely studied, the role of different factors that could contribute to the increased vulnerability to mephedrone abuse is still poorly understood. Objectives The aim of the presented study was to assess the impact of several factors (sex differences, social-conditioning, and chronic mild unpredictable stress — CMUS) on the liability to mephedrone-induced reward in Wistar rats. Methods The rewarding effects of mephedrone in male and female rats were assessed using the conditioned place preference (CPP) procedure. Furthermore, the impact of social factor and stress was evaluated in male rats using social-CPP and CMUS-dependent CPP, respectively. Results Mephedrone induced classic-CPP in female (10 mg/kg), as well as in male (10 and 20 mg/kg) rats. However, the impact of mephedrone treatment during social-CPP was highly dose-dependent as the rewarding effects of low dose of mephedrone (5 mg/kg; non-active in classic-CPP) were potentiated when administered during social-conditioning. Interestingly, social-conditioning with a higher dose of 20 mg/kg (that induced classic-CPP) was able to reverse these effects. Finally, CMUS potentiated rewarding effects of a low dose of mephedrone (5 mg/kg) and increased the level of corticosterone in rats’ prefrontal cortex and hippocampus. Conclusions Altogether, the presented results give new insight into possible factors underlying the vulnerability to mephedrone abuse and can serve as a basis for further studies assessing mechanisms underlying observed effects.


2019 ◽  
Vol 22 (11) ◽  
pp. 710-723 ◽  
Author(s):  
Atul P Daiwile ◽  
Subramaniam Jayanthi ◽  
Bruce Ladenheim ◽  
Michael T McCoy ◽  
Christie Brannock ◽  
...  

Abstract Background Methamphetamine (METH) use disorder is prevalent worldwide. There are reports of sex differences in quantities of drug used and relapses to drug use among individuals with METH use disorder. However, the molecular neurobiology of these potential sex differences remains unknown. Methods We trained rats to self-administer METH (0. 1 mg/kg/infusion, i.v.) on an fixed-ratio-1 schedule for 20 days using two 3-hour daily METH sessions separated by 30-minute breaks. At the end of self-administration training, rats underwent tests of cue-induced METH seeking on withdrawal days 3 and 30. Twenty-four hours later, nucleus accumbens was dissected and then used to measure neuropeptide mRNA levels. Results Behavioral results show that male rats increased the number of METH infusions earlier during self-administration training and took more METH than females. Both male and female rats could be further divided into 2 phenotypes labeled high and low takers based on the degree of escalation that they exhibited during the course of the METH self-administration experiment. Both males and females exhibited incubation of METH seeking after 30 days of forced withdrawal. Females had higher basal mRNA levels of dynorphin and hypocretin/orexin receptors than males, whereas males expressed higher vasopressin mRNA levels than females under saline and METH conditions. Unexpectedly, only males showed increased expression of nucleus accumbens dynorphin after METH self-administration. Moreover, there were significant correlations between nucleus accumbens Hcrtr1, Hcrtr2, Crhr2, and Avpr1b mRNA levels and cue-induced METH seeking only in female rats. Conclusion Our results identify some behavioral and molecular differences between male and female rats that had self-administered METH. Sexual dimorphism in responses to METH exposure should be considered when developing potential therapeutic agents against METH use disorder.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Bernardo Lopez ◽  
Galina Petrova ◽  
Justine M Abais-Battad ◽  
Hayley Lund ◽  
Daniel Fehrenbach ◽  
...  

Epidemiological data indicates that acute kidney injury (AKI) is an independent risk factor for the development of hypertension and chronic kidney disease in patients. Previous studies demonstrated that rats develop sodium-dependent hypertension and kidney damage following experimental AKI induced by a renal ischemia-reperfusion (IR) insult; furthermore, these high salt deleterious effects could be blunted by administration of immunosuppressive agents. The present study was performed on Dahl SS (SS) rats and SS rats with a null mutation in the CD247 gene (SS-CD247) leading to depletion of T-lymphocytes in order to specifically examine the role of T cells in this response (n=5-6 rats/group). As assessed by serum creatinine (SCr) levels, no difference was observed in the initial response to IR injury between SS and SS-CD247: SCr increased from 0.44±0.03 to 2.16±0.32 mg/dl in SS rats 24 hours after an initial 30 minute period of renal ischemia and returned to control levels after 8 days of recovery. Moreover, no differences were noted in mean arterial pressure (MAP) or albumin excretion rate (UAlb) between SS and SS-CD247 after 43 days of recovery from IR injury while the rats were maintained on a low salt (0.4% NaCl) diet. When the rats were fed a 4.0% NaCl diet for two weeks, MAP and UAlb significantly increased in the sham SS to 178±9 mmHg and 189±25 mg/day, respectively; values significantly greater than observed in the sham SS-CD247 rats (148±2 mmHg and 87±17 mg/day). As expected, the SS rats recovered from IR injury demonstrated an exaggerated increase in MAP (peaking at 183±2 mmHg) and UAlb (275±54 mg/day) in response to high salt. There was no difference in the number of total CD3+ lymphocytes in the kidneys of IR and sham SS after high salt, though the ratio of CD4+/CD8+ T cells was increased in the IR group. Compared to sham CD247, an exaggerated elevation of MAP (157±9 mmHg) and UAlb (210±32 mg/day) was also observed in the SS-CD247 rats recovered from IR injury, demonstrating enhanced responsiveness following IR injury in animals lacking T cells. These data indicate that T lymphocytes amplify salt-sensitive hypertension and renal damage, but other mechanisms also mediate the salt-sensitive hypertension and renal damage that occurs in animals recovered from IR injury.


2019 ◽  
Author(s):  
Yingying Han ◽  
Bo Sichterman ◽  
Maria Carrillo ◽  
Valeria Gazzola ◽  
Christian Keysers

AbstractEmotional contagion, the ability to feel what other individuals feel, is thought to be an important element of social life. In humans, emotional contagion has been shown to be stronger in women than men. Emotional contagion has been shown to exist also in rodents, and a growing number of studies explore the neural basis of emotional contagion in male rats and mice. These studies promise to shed light on the mechanisms that might go astray in psychiatric disorders characterized by dysfunctions of emotional contagion and empathy. Here we explore whether there are sex differences in emotional contagion in rats. We use an established paradigm in which a demonstrator rat receives footshocks while freezing is measured in both the demonstrator and an observer rat, which can hear, smell and see each other. By comparing pairs of male rats with pairs of female rats, we find (i) that female demonstrators freeze less when submitted to footshocks, but that (ii) the emotional contagion response, i.e. the degree of influence across the rats, does not depend on the sex of the rats. This was true whether emotional contagion was quantified based on the slope of a regression linking demonstrator and observer average freezing, or on Granger causality estimates of moment-to-moment freezing. The lack of sex differences in emotional contagion is compatible with an interpretation of emotional contagion as serving selfish danger detection.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Stavrakis ◽  
K Elkholey ◽  
L Morris ◽  
Y Li ◽  
S S Po

Abstract Background Heart failure (HF) with preserved ejection fraction (HFpEF) accounts for 50% of HF and sudden death is the leading cause of mortality. There are considerable sex differences in cardiac structure and function, which may be related to outcomes in HFpEF. Transcutaneous vagus nerve stimulation (tVNS) is antiarrhythmic. Purpose To describe sex differences in mortality, autonomic tone and ECG parameters in rats with HFpEF and examine the effect of tVNS on these outcomes. Methods Dahl salt sensitive (DS) rats of either sex were randomized into high salt (HS, 8% NaCl) or low salt (LS) diet (0.3% NaCl) at 7 weeks of age. After 6 weeks of LS or HS diets, HS rats were randomized to receive active or sham tVNS, 30min daily (20Hz, 3mA) for 4 weeks. The rats were monitored daily for 4 weeks for the development of HFpEF. ECG and echocardiogram were performed at 13 weeks (baseline) and 17 weeks (endpoint). Heart rate variability (HRV) was calculated at the respective time points. ECG and HRV parameters were analyzed in a blinded fashion. Logistic regression analysis was performed to identify independent predictors of mortality. Results A total of 58 rats were included (5 male LS, 6 female LS, 22 male HS and 25 female HS). HS rats developed significant hypertension and signs of HFpEF, while 24% of females and 53% of males died (P=0.004). There were 4 sudden cardiac deaths in males (with ventricular tachycardia documented in 1 rat), whereas all the females died of HF or stroke. Corrected QT (QTc) at baseline significantly prolonged in HS compared to LS rats (250.5±14.4ms vs. 226.8±13.9ms, respectively, p=0.0007), while all other ECG parameters did not differ significantly between groups. In HS rats, QTc prolongation was significantly more pronounced in males compared to females (259.4±20.6ms vs. 243.8±14.5ms, respectively, P=0.002). In univariate analysis, prolonged baseline QTc (OR=1.04; 95% CI 1.01–1.06, p=0.003) and male sex (OR=3.21, 95% CI 1.19–8.66, p=0.016) predicted mortality. However, in multivariate analysis, QTc was the only significant predictor of mortality (OR=1.04; 95% CI 1.01–1.06, p=0.003). After 4 weeks of treatment, active tVNS significantly decreased QTc compared to sham (244.6±13.8ms vs. 255.8±14.0ms, respectively, p=0.017) in both male and female rats in a similar manner. The low frequency to high frequency ratio (LF/HF) of HRV, which reflects sympathovagal balance, was significantly decreased in active tVNS rats compared to sham (0.21±0.13 vs. 0.54±0.14, respectively; p=0.001) in both male and female rats in a similar manner. Conclusions Male rats with HFpEF exhibit worse survival compared to females and are at higher risk for sudden death. QTc prolongation accounts for the increased risk of sudden death in males compared to females. Autonomic modulation with tVNS attenuates the unfavorable changes in QTc and HRV induced by HS diet and may be used to prevent ventricular arrhythmias in patients with HFpEF.


1995 ◽  
Vol 268 (1) ◽  
pp. R40-R49 ◽  
Author(s):  
J. N. Stallone

Deoxycorticosterone acetate (DOCA)-salt hypertension develops to a greater extent in male (M) than in female (F) rats. To determine the role of the vasculature, reactivity to arginine vasopressin (AVP) and prostanoid output were examined in the isolated perfused mesenteric vasculature of hypertensive (HT) and normotensive-control (NTC) M and F rats after acute (1-wk) and chronic (4-wk) DOCA-salt treatment. Systolic blood pressure was significantly higher in M than in F HT rats (187 +/- 3 vs. 151 +/- 3 mmHg after 4 wk; P < 0.02). After acute treatment, vascular reactivity to AVP (maximal perfusion pressure) in HT was elevated in M (181 +/- 18 mmHg; P < 0.02) but not in F (135 +/- 6 mmHg) compared with NTC (90 +/- 6 mmHg, M vs. 119 +/- 5 mmHg, F). After chronic treatment, vascular reactivity to AVP in HT was elevated in both sexes (P < 0.02), although more in F (175 +/- 13 mmHg) than in M (141 +/- 11 mmHg). In contrast, vascular responsiveness to phenylephrine did not differ significantly between M and F NTC or HT preparations after either acute or chronic treatment. Sex differences in basal and AVP-induced 6-ketoprostaglandin (6-keto-PG) F1 alpha and PGE2 output by HT and NTC vasculature were reciprocal to sex differences in the vasoconstriction responses to AVP. After acute treatment, AVP-stimulated 6-keto-PGF1 alpha output by HT was elevated slightly in F (33.6 +/- 1.7 ng/3 min; P < or = 0.02) but not in M (49.9 +/- 4.3 ng/3 min) compared with NTC (23.5 +/- 2.6 ng/3 min, F vs. 34.7 +/- 4.9 ng/3 min, M). After chronic treatment, output by HT was enhanced in both sexes (P < or = to 0.02), although more in M (109 +/- 15.4 ng/3 min) than in F (68 +/- 6.6 ng/3 min)> These findings suggest that sex differences in the relative balance between AVP-induced vasoconstriction and vasodilatory prostanoid release may contribute to male-female differences in mesenteric vascular reactivity to AVP in NT and that disturbances in this balance may be responsible, at least in part, for the sex- and time-dependent changes in reactivity to AVP observed during the development of DOCA-salt hypertension.


Sign in / Sign up

Export Citation Format

Share Document