scholarly journals Deep Neural Network Approach for Continuous ECG‐Based Automated External Defibrillator Shock Advisory System During Cardiopulmonary Resuscitation

2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Shirin Hajeb‐M ◽  
Alicia Cascella ◽  
Matt Valentine ◽  
K. H. Chon

Background Because chest compressions induce artifacts in the ECG, current automated external defibrillators instruct the user to stop cardiopulmonary resuscitation (CPR) while an automated rhythm analysis is performed. It has been shown that minimizing interruptions in CPR increases the chance of survival. Methods and Results The objective of this study was to apply a deep‐learning algorithm using convolutional layers, residual networks, and bidirectional long short‐term memory method to classify shockable versus nonshockable rhythms in the presence and absence of CPR artifact. Forty subjects' data from Physionet with 1131 shockable and 2741 nonshockable samples contaminated with 43 different CPR artifacts that were acquired from a commercial automated external defibrillator during asystole were used. We had separate data as train and test sets. Using our deep neural network model, the sensitivity and specificity of the shock versus no‐shock decision for the entire data set over the 4‐fold cross‐validation sets were 95.21% and 86.03%, respectively. This result was based on the training and testing of the model using ECG data in both the presence and the absence of CPR artifact. For ECG without CPR artifact, the sensitivity was 99.04% and the specificity was 95.2%. A sensitivity of 94.21% and a specificity of 86.14% were obtained for ECG with CPR artifact. In addition to 4‐fold cross‐validation sets, we also examined leave‐one‐subject‐out validation. The sensitivity and specificity for the case of leave‐one‐subject‐out validation were 92.71% and 97.6%, respectively. Conclusions The proposed trained model can make shock versus nonshock decision in automated external defibrillators, regardless of CPR status. The results meet the American Heart Association's sensitivity requirement (>90%).

2019 ◽  
Vol 23 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Yao Yevenyo Ziggah ◽  
Hu Youjian ◽  
Alfonso Rodrigo Tierra ◽  
Prosper Basommi Laari

The popularity of Artificial Neural Network (ANN) methodology has been growing in a wide variety of areas in geodesy and geospatial sciences. Its ability to perform coordinate transformation between different datums has been well documented in literature. In the application of the ANN methods for the coordinate transformation, only the train-test (hold-out cross-validation) approach has usually been used to evaluate their performance. Here, the data set is divided into two disjoint subsets thus, training (model building) and testing (model validation) respectively. However, one major drawback in the hold-out cross-validation procedure is inappropriate data partitioning. Improper split of the data could lead to a high variance and bias in the results generated. Besides, in a sparse dataset situation, the hold-out cross-validation is not suitable. For these reasons, the K-fold cross-validation approach has been recommended. Consequently, this study, for the first time, explored the potential of using K-fold cross-validation method in the performance assessment of radial basis function neural network and Bursa-Wolf model under data-insufficient situation in Ghana geodetic reference network. The statistical analysis of the results revealed that incorrect data partition could lead to a false reportage on the predictive performance of the transformation model. The findings revealed that the RBFNN and Bursa-Wolf model produced a transformation accuracy of 0.229 m and 0.469 m, respectively. It was also realised that a maximum horizontal error of 0.881 m and 2.131 m was given by the RBFNN and Bursa-Wolf. The obtained results per the cadastral surveying and plan production requirement set by the Ghana Survey and Mapping Division are applicable. This study will contribute to the usage of K-fold cross-validation approach in developing countries having the same sparse dataset situation like Ghana as well as in the geodetic sciences where ANN users seldom apply the statistical resampling technique.


2020 ◽  
Vol 10 (6) ◽  
pp. 1999 ◽  
Author(s):  
Milica M. Badža ◽  
Marko Č. Barjaktarović

The classification of brain tumors is performed by biopsy, which is not usually conducted before definitive brain surgery. The improvement of technology and machine learning can help radiologists in tumor diagnostics without invasive measures. A machine-learning algorithm that has achieved substantial results in image segmentation and classification is the convolutional neural network (CNN). We present a new CNN architecture for brain tumor classification of three tumor types. The developed network is simpler than already-existing pre-trained networks, and it was tested on T1-weighted contrast-enhanced magnetic resonance images. The performance of the network was evaluated using four approaches: combinations of two 10-fold cross-validation methods and two databases. The generalization capability of the network was tested with one of the 10-fold methods, subject-wise cross-validation, and the improvement was tested by using an augmented image database. The best result for the 10-fold cross-validation method was obtained for the record-wise cross-validation for the augmented data set, and, in that case, the accuracy was 96.56%. With good generalization capability and good execution speed, the new developed CNN architecture could be used as an effective decision-support tool for radiologists in medical diagnostics.


2020 ◽  
Vol 12 (24) ◽  
pp. 4125
Author(s):  
Lu She ◽  
Hankui K. Zhang ◽  
Zhengqiang Li ◽  
Gerrit de Leeuw ◽  
Bo Huang

Spectral aerosol optical depth (AOD) estimation from satellite-measured top of atmosphere (TOA) reflectances is challenging because of the complicated TOA-AOD relationship and a nexus of land surface and atmospheric state variations. This task is usually undertaken using a physical model to provide a first estimate of the TOA reflectances which are then optimized by comparison with the satellite data. Recently developed deep neural network (DNN) models provide a powerful tool to represent the complicated relationship statistically. This study presents a methodology based on DNN to estimate AOD using Himawari-8 Advanced Himawari Imager (AHI) TOA observations. A year (2017) of AHI TOA observations over the Himawari-8 full disk collocated in space and time with Aerosol Robotic Network (AERONET) AOD data were used to derive a total of 14,154 training and validation samples. The TOA reflectance in all six AHI solar bands, three TOA reflectance ratios derived based on the dark-target assumptions, sun-sensor geometry, and auxiliary data are used as predictors to estimate AOD at 500 nm. The DNN AOD is validated by separating training and validation samples using random k-fold cross-validation and using AERONET site-specific leave-one-station-out validation, and is compared with a random forest regression estimator and Japan Meteorological Agency (JMA) AOD. The DNN AOD shows high accuracy: (1) RMSE = 0.094, R2 = 0.915 for k-fold cross-validation, and (2) RMSE = 0.172, R2 = 0.730 for leave-one-station-out validation. The k-fold cross-validation overestimates the DNN accuracy as the training and validation samples may come from the same AHI pixel location. The leave-one-station-out validation reflects the accuracy for large-area applications where there are no training samples for the pixel location to be estimated. The DNN AOD has better accuracy than the random forest AOD and JMA AOD. In addition, the contribution of the dark-target derived TOA ratio predictors is examined and confirmed, and the sensitivity to the DNN structure is discussed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jinichi Mori ◽  
Shizuo Kaji ◽  
Hiroki Kawai ◽  
Satoshi Kida ◽  
Masaharu Tsubokura ◽  
...  

Abstract In this study, we developed the world's first artificial intelligence (AI) system that assesses the dysplasia of blood cells on bone marrow smears and presents the result of AI prediction for one of the most representative dysplasia—decreased granules (DG). We photographed field images from the bone marrow smears from patients with myelodysplastic syndrome (MDS) or non-MDS diseases and cropped each cell using an originally developed cell detector. Two morphologists labelled each cell. The degree of dysplasia was evaluated on a four-point scale: 0–3 (e.g., neutrophil with severely decreased granules were labelled DG3). We then constructed the classifier from the dataset of labelled images. The detector and classifier were based on a deep neural network pre-trained with natural images. We obtained 1797 labelled images, and the morphologists determined 134 DGs (DG1: 46, DG2: 77, DG3: 11). Subsequently, we performed a five-fold cross-validation to evaluate the performance of the classifier. For DG1–3 labelled by morphologists, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were 91.0%, 97.7%, 76.3%, 99.3%, and 97.2%, respectively. When DG1 was excluded in the process, the sensitivity, specificity, PPV, NPV, and accuracy were 85.2%, 98.9%, 80.6%, and 99.2% and 98.2%, respectively.


2021 ◽  
Vol 21 (1) ◽  
pp. 23-33
Author(s):  
Oscar Oscar ◽  
Nurlaelatul Maulidah ◽  
Annida Purnamawati ◽  
Destiana Putri ◽  
Hilman F Pardede

Telemarketing is one effective way for promoting products. However, it is often difficult to measure the success of telemarketing. Therefore, a way to predict the success rate of telemarketing, and hence strategies could be planned to increase the success rate. In this study, we evaluate several implementations of machine learning for prediction the success of telemarketing. The evaluated methods are Deep Neural Network (DNN), Random Forest, and K-nearest neighbor (K-NN). We validate our experiments using 10-fold cross validation and our experiments show that DNN with 3 hidden layers outperforms other methods. Accuracy of 90% is achieved with the DNN. It is better than Random Forest and KNN that achieve accuracies of algorithm and 88% and 89%.Keywords— Bank Marketing, DNN, KNN, Random Forest.


2020 ◽  
pp. 1-14
Author(s):  
Esraa Hassan ◽  
Noha A. Hikal ◽  
Samir Elmuogy

Nowadays, Coronavirus (COVID-19) considered one of the most critical pandemics in the earth. This is due its ability to spread rapidly between humans as well as animals. COVID_19 expected to outbreak around the world, around 70 % of the earth population might infected with COVID-19 in the incoming years. Therefore, an accurate and efficient diagnostic tool is highly required, which the main objective of our study. Manual classification was mainly used to detect different diseases, but it took too much time in addition to the probability of human errors. Automatic image classification reduces doctors diagnostic time, which could save human’s life. We propose an automatic classification architecture based on deep neural network called Worried Deep Neural Network (WDNN) model with transfer learning. Comparative analysis reveals that the proposed WDNN model outperforms by using three pre-training models: InceptionV3, ResNet50, and VGG19 in terms of various performance metrics. Due to the shortage of COVID-19 data set, data augmentation was used to increase the number of images in the positive class, then normalization used to make all images have the same size. Experimentation is done on COVID-19 dataset collected from different cases with total 2623 where (1573 training,524 validation,524 test). Our proposed model achieved 99,046, 98,684, 99,119, 98,90 In terms of Accuracy, precision, Recall, F-score, respectively. The results are compared with both the traditional machine learning methods and those using Convolutional Neural Networks (CNNs). The results demonstrate the ability of our classification model to use as an alternative of the current diagnostic tool.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 807
Author(s):  
Carlos M. Castorena ◽  
Itzel M. Abundez ◽  
Roberto Alejo ◽  
Everardo E. Granda-Gutiérrez ◽  
Eréndira Rendón ◽  
...  

The problem of gender-based violence in Mexico has been increased considerably. Many social associations and governmental institutions have addressed this problem in different ways. In the context of computer science, some effort has been developed to deal with this problem through the use of machine learning approaches to strengthen the strategic decision making. In this work, a deep learning neural network application to identify gender-based violence on Twitter messages is presented. A total of 1,857,450 messages (generated in Mexico) were downloaded from Twitter: 61,604 of them were manually tagged by human volunteers as negative, positive or neutral messages, to serve as training and test data sets. Results presented in this paper show the effectiveness of deep neural network (about 80% of the area under the receiver operating characteristic) in detection of gender violence on Twitter messages. The main contribution of this investigation is that the data set was minimally pre-processed (as a difference versus most state-of-the-art approaches). Thus, the original messages were converted into a numerical vector in accordance to the frequency of word’s appearance and only adverbs, conjunctions and prepositions were deleted (which occur very frequently in text and we think that these words do not contribute to discriminatory messages on Twitter). Finally, this work contributes to dealing with gender violence in Mexico, which is an issue that needs to be faced immediately.


Author(s):  
Je Hyeok Oh ◽  
Gyu Chong Cho ◽  
Seung Mok Ryoo ◽  
So Hyun Han ◽  
Seon Hee Woo ◽  
...  

Abstract Aim: In South Korea, the law concerning automated external defibrillators (AEDs) states that they should be installed in specific places including apartment complexes. This study was conducted to investigate the current status and effectiveness of installation and usage of AEDs in South Korea. Methods: Installation and usage of AEDs in South Korea is registered in the National Emergency Medical Center (NEMC) database. Compared were the installed number, usage, and annual rate of AED use according to places of installation. All data were obtained from the NEMC database. Results: After excluding AEDs installed in ambulances or fire engines (n = 2,003), 36,498 AEDs were registered in South Korea from 1998 through 2018. A higher number of AEDs were installed in places required by the law compared with those not required by the law (20,678 [56.7%] vs. 15,820 [43.3%]; P <.001). Among them, 11,318 (31.0%) AEDs were installed in apartment complexes. The overall annual rate of AED use was 0.38% (95% CI, 0.33-0.44). The annual rate of AED use was significantly higher in places not required by the law (0.62% [95% CI, 0.52-0.72] versus 0.21% [95% CI, 0.16-0.25]; P <.001). The annual rate of AED use in apartment complexes was 0.13% (95% CI, 0.08-0.17). Conclusion: There were significant mismatches between the number of installed AEDs and the annual rate of AED use among places. To optimize the benefit of AEDs in South Korea, changes in the policy for selecting AED placement are needed.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1514
Author(s):  
Seung-Ho Lim ◽  
WoonSik William Suh ◽  
Jin-Young Kim ◽  
Sang-Young Cho

The optimization for hardware processor and system for performing deep learning operations such as Convolutional Neural Networks (CNN) in resource limited embedded devices are recent active research area. In order to perform an optimized deep neural network model using the limited computational unit and memory of an embedded device, it is necessary to quickly apply various configurations of hardware modules to various deep neural network models and find the optimal combination. The Electronic System Level (ESL) Simulator based on SystemC is very useful for rapid hardware modeling and verification. In this paper, we designed and implemented a Deep Learning Accelerator (DLA) that performs Deep Neural Network (DNN) operation based on the RISC-V Virtual Platform implemented in SystemC in order to enable rapid and diverse analysis of deep learning operations in an embedded device based on the RISC-V processor, which is a recently emerging embedded processor. The developed RISC-V based DLA prototype can analyze the hardware requirements according to the CNN data set through the configuration of the CNN DLA architecture, and it is possible to run RISC-V compiled software on the platform, can perform a real neural network model like Darknet. We performed the Darknet CNN model on the developed DLA prototype, and confirmed that computational overhead and inference errors can be analyzed with the DLA prototype developed by analyzing the DLA architecture for various data sets.


Sign in / Sign up

Export Citation Format

Share Document