scholarly journals Long-term stability of clinically relevant chemistry analytes in pleural and peritoneal fluid

2020 ◽  
Vol 30 (2) ◽  
pp. 234-241
Author(s):  
Lara Milevoj Kopcinovic ◽  
Marija Brcic ◽  
Jelena Culej ◽  
Marijana Miler ◽  
Nora Nikolac Gabaj ◽  
...  

Introduction: Our aim was to investigate the stability of clinically relevant analytes in pleural and peritoneal fluids stored in variable time periods and variable storage temperatures prior to analysis. Materials and methods: Baseline total proteins (TP), albumin (ALB), lactate dehydrogenase (LD), cholesterol (CHOL), triglycerides (TRIG), creatinine (CREA), urea, glucose and amylase (AMY) were measured using standard methods in residual samples from 29 pleural and 12 peritoneal fluids referred to our laboratory. Aliquots were stored for 6 hours at room temperature (RT); 3, 7, 14 and 30 days at - 20°C. At the end of each storage period, all analytes were re-measured. Deviations were calculated and compared to stability limits (SL). Results: Pleural fluid TP and CHOL did not differ in the observed storage periods (P = 0.265 and P = 0.170, respectively). Statistically significant differences were found for ALB, LD, TRIG, CREA, urea, glucose and AMY. Peritoneal fluid TP, ALB, TRIG, urea and AMY were not statistically different after storage, contrary to LD, CHOL, CREA and glucose. Deviations for TP, ALB, CHOL, TRIG, CREA, urea and AMY in all storage periods tested for both serous fluids were within the SL. Deviations exceeding SL were observed for LD and glucose when stored for 3 and 7 days at - 20°C, respectively. Conclusions: TP, ALB, CHOL, TRIG, CREA, urea and AMY are stable in serous samples stored up to 6 hours at RT and/or 30 days at - 20°C. Glucose is stable up to 6 hours at RT and 3 days at - 20°C. The stability of LD in is limited to 6 hours at RT.

2019 ◽  
Vol 55 (3) ◽  
pp. 188-192
Author(s):  
M. L. Colsoul ◽  
A. Breuer ◽  
N. Goderniaux ◽  
J. D. Hecq ◽  
L. Soumoy ◽  
...  

Background and Objective: Infusion containing lorazepam is used by geriatric department to limit anxiety disorders in the elderly. Currently, these infusions are prepared according to demand by the nursing staff, but the preparation in advance in a centralized service could improve quality of preparation and time management. The aim of this study was to investigate the long-term stability of this infusion in polypropylene syringes stored at 5 ± 3°C. Then, results obtained were compared with stability data of lorazepam in syringes stored at room temperature, glass bottles at 5 ± 3°C, and glass bottles at room temperature. Method: Eight syringes and 6 bottles of infusion were prepared by diluting 1 mL lorazepam 4 mg in 23 mL of NaCl 0.9% under aseptic conditions. Five syringes and 3 bottles were stored at 5 ± 3°C and 3 syringes and 3 bottles were stored at room temperature for 30 days. During the storage period, particle appearance or color change were periodically checked by visual and microscope inspection. Turbidity was assessed by measurements of optical density (OD) at 3 wavelengths (350 nm, 410 nm, 550 nm). The stability of pH was also evaluated. The lorazepam concentrations were measured at each time point by high-performance liquid chromatography with ultraviolet detector at 220 nm. Results: Solutions were physically unstable in syringes at 5 ± 3°C after 4 days: crystals and a drop of OD at 350 nm were observed. However, pH was stable. After 2 days, solutions were considered as chemically unstable because a loss of lorazepam concentration higher than 10% was noticed: the lower 1-sided confidence limit at 95% was below 90% of the initial concentration. To assess temperature and polypropylene influence, results were compared with those obtained for syringes at room temperature and bottles at 5 ± 3°C and room temperature. Precipitation, drop of OD at 350 nm, and chemical instability were observed in all conditions. Conclusion: Solutions of lorazepam were unstable after 2 days in syringes at 5 ± 3°C. Preparation in advance appears, therefore, not possible for the clinical use. Storage conditions (temperature and form) do not improve the stability.


2018 ◽  
Vol 56 (8) ◽  
pp. 1251-1258 ◽  
Author(s):  
Theresa Winter ◽  
Anke Hannemann ◽  
Juliane Suchsland ◽  
Matthias Nauck ◽  
Astrid Petersmann

AbstractBackground:Measuring the glucose concentration in whole blood samples is critical due to unsatisfactory glycolysis inhibition. Previous studies showed that Terumo tubes were superior, but they were taken off the European market in 2016 and alternatives were required. This initiated the present evaluation of glucose stability in five available tube types.Methods:Venous blood samples were collected from 61 healthy volunteers to test tubes supplied by Terumo (two sets), Greiner FC-Mix, BD FX-Mixture and BD serum. After sampling, the contents were thoroughly mixed and centrifuged within an hour. The glucose concentrations were determined and the samples resuspended except for BD serum tubes (gel barrier). The first 30 samples were stored at room temperature and the remaining 31 at 4°C. After 24, 48, 72 and 96 h, all tubes were (re)centrifuged, and glucose concentration measurements were repeated.Results:Changes in glucose concentrations over time differed significantly between the investigated tube types and to a certain extent between the two storing conditions. Glycolysis was most evident in the BD FX-mixture tubes. Good glucose stability was observed in samples retrieved form BD serum and Greiner tubes. The stability in both Terumo tubes was comparable to that in other studies. Although Greiner and both Terumo tubes are supposed to contain the same glycolysis inhibitor, glucose stability differed between these tubes.Conclusions:We showed that Greiner is an acceptable alternative to Terumo and that glucose in serum that was rapidly separated from corpuscles by a gel barrier is stable for an extended time.


1979 ◽  
Vol 42 (04) ◽  
pp. 1135-1140 ◽  
Author(s):  
G I C Ingram

SummaryThe International Reference Preparation of human brain thromboplastin coded 67/40 has been thought to show evidence of instability. The evidence is discussed and is not thought to be strong; but it is suggested that it would be wise to replace 67/40 with a new preparation of human brain, both for this reason and because 67/40 is in a form (like Thrombotest) in which few workers seem to use human brain. A �plain� preparation would be more appropriate; and a freeze-dried sample of BCT is recommended as the successor preparation. The opportunity should be taken also to replace the corresponding ox and rabbit preparations. In the collaborative study which would be required it would then be desirable to test in parallel the three old and the three new preparations. The relative sensitivities of the old preparations could be compared with those found in earlier studies to obtain further evidence on the stability of 67/40; if stability were confirmed, the new preparations should be calibrated against it, but if not, the new human material should receive a calibration constant of 1.0 and the new ox and rabbit materials calibrated against that.The types of evidence available for monitoring the long-term stability of a thromboplastin are discussed.


Solar Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 28-34
Author(s):  
Mahmoud Samadpour ◽  
Mahsa Heydari ◽  
Mahdi Mohammadi ◽  
Parisa Parand ◽  
Nima Taghavinia

2021 ◽  
Vol 15 (1) ◽  
pp. 2
Author(s):  
Cristina Martín-Sabroso ◽  
Mario Alonso-González ◽  
Ana Fernández-Carballido ◽  
Juan Aparicio-Blanco ◽  
Damián Córdoba-Díaz ◽  
...  

Accumulation of cystine crystals in the cornea of patients suffering from cystinosis is considered pathognomonic and can lead to severe ocular complications. Cysteamine eye drop compounded formulations, commonly prepared by hospital pharmacy services, are meant to diminish the build-up of corneal cystine crystals. The objective of this work was to analyze whether the shelf life proposed for six formulations prepared following different protocols used in hospital pharmacies is adequate to guarantee the quality and efficacy of cysteamine eye drops. The long-term and in-use stabilities of these preparations were studied using different parameters: content of cysteamine and its main degradation product cystamine; appearance, color and odor; pH and viscosity; and microbiological analysis. The results obtained show that degradation of cysteamine was between 20% and 50% after one month of storage in the long-term stability study and between 35% and 60% in the in-use study. These data confirm that cysteamine is a very unstable molecule in aqueous solution, the presence of oxygen being the main degradation factor. Saturation with nitrogen gas of the solutions offers a means of reducing cysteamine degradation. Overall, all the formulae studied presented high instability at the end of their shelf life, suggesting that their clinical efficacy might be dramatically compromised.


2013 ◽  
Vol 23 (11) ◽  
pp. 2129-2154 ◽  
Author(s):  
HÉLÈNE BARUCQ ◽  
JULIEN DIAZ ◽  
VÉRONIQUE DUPRAT

This work deals with the stability analysis of a one-parameter family of Absorbing Boundary Conditions (ABC) that have been derived for the acoustic wave equation. We tackle the problem of long-term stability of the wave field both at the continuous and the numerical levels. We first define a function of energy and show that it is decreasing in time. Its discrete form is also decreasing under a Courant–Friedrichs–Lewy (CFL) condition that does not depend on the ABC. Moreover, the decay rate of the continuous energy can be determined: it is exponential if the computational domain is star-shaped and this property can be illustrated numerically.


2021 ◽  
pp. 1-27
Author(s):  
Yichen Bao ◽  
Kai Liu ◽  
Quan Zheng ◽  
Lulu Yao ◽  
Yufu Xu

Abstract Pickering emulsion is a new type of stable emulsion made by ultra-fine solid particles instead of traditional surfactants as stabilizers, which has received widespread attention in recent years. The preparation methods of stator-rotor homogenization, high-pressure homogenization, and ultrasonic emulsification were compared with others in this work. The main factors affecting the stability of Pickering emulsion are the surface humidity of the solid particles, the polarity of the oil phase, and the oil-water ratio. These factors could affect the nature of the solid particles, the preparation process of Pickering emulsion and the external environment. Consequently, the long-term stability of Pickering emulsion is still a challenge. The tribological investigations of Pickering emulsion were summarized, and the multifunctional Pickering emulsion shows superior prospects for tribological applications. Moreover, the latest development of Pickering emulsion offers a new strategy for smart lubrication in the near future.


2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000371-000376 ◽  
Author(s):  
Marina Santo Zarnik ◽  
Darko Belavic

This paper discusses the stability of a piezoresistive, LTCC-based, pressure sensor that was designed for measurements in a low-pressure range below 100 mbar. The intrinsic stability of the sensor's offset was evaluated at a constant ambient temperature and different conditions regarding the atmospheric humidity. The sensors were also subjected to functional fatigue tests, which included a full-scale and an overload pressure cycling. The results of the fatigue testing revealed the vulnerability of the sensor's structure from the point of view of the long-term stability and the life-cycle. Nevertheless, the stability of the key characteristics of the prototype sensors was found to be satisfactory for accurate measurements in the low-pressure ranges.


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000305-000309 ◽  
Author(s):  
Vinayak Tilak ◽  
Cheng-Po Chen ◽  
Peter Losee ◽  
Emad Andarawis ◽  
Zachary Stum

Silicon carbide based ICs have the potential to operate at temperatures exceeding that of conventional semiconductors such as silicon. Silicon carbide (SiC) based MOSFETs and ICs were fabricated and measured at room temperature and 300°C. A common source amplifier was fabricated and tested at room temperature and high temperature. The gain at room temperature and high temperature was 7.6 and 6.8 respectively. A SiC MOSFET based operational amplifier was also fabricated and tested at room temperature and 300°C. The small signal open loop gain at 1kHz was 60 dB at room temperature and 57 dB at 300°C. Long term stability testing at 300°C of the MOSFET and common source amplifiers showed very little drift.


Author(s):  
SRI AGUNG FITRI KUSUMA ◽  
MARLINE ABDASSAH

Objective: The purpose of this study was to determine a sterile 0.5% chloramphenicol eye drop formula with the best potency of antibacterial by determining the appropriate sterilization method and the supporting pH. Methods: 0.5% chloramphenicol was formulated with 0.01% thimerosal, which act as a bactericide and combines with borate buffer to produce eye drop formulas with variations in pH (6.8, 7.0 and 7.4). All formulas were stored at room temperature for 28 d and were evaluated, including: organoleptic of the preparations, sterility, pH stability, and the antibacterial potency of chloramphenicol in eye drops. Results: All dosage formulas did not undergo photodegradation reactions which were marked by no change in color until the end of the storage period. However, the formula with pH 6.8 which was sterilized by heating in a presence of bactericide, showed the presence of more particulate precipitates than in the pH 6.8 formula which was sterilized using membrane filter bacteria. However, both methods of sterilization produced sterile chloramphenicol eye drops. The preparation using a method of heat sterilization with bactericide decreased the pH greater than the preparation using a sterile bacterial filter sterilization method. C2 preparations at pH 7.0 and sterilized using the bacterial filter membrane sterilization method were more stable because they had the smallest pH change of 0.05 and the percentage reduction in antibacterial potential was smaller at 1.15%. Conclusion: The best treatment for the chloramphenicol eye drop was kept the pH formula at pH 7 and sterilized using bacterial filter membrane sterilization method.


Sign in / Sign up

Export Citation Format

Share Document