The Neural Basis of Parallel Saccade Programming: An fMRI Study

2011 ◽  
Vol 23 (11) ◽  
pp. 3669-3680 ◽  
Author(s):  
Yanbo Hu ◽  
Robin Walker

The neural basis of parallel saccade programming was examined in an event-related fMRI study using a variation of the double-step saccade paradigm. Two double-step conditions were used: one enabled the second saccade to be partially programmed in parallel with the first saccade while in a second condition both saccades had to be prepared serially. The intersaccadic interval, observed in the parallel programming (PP) condition, was significantly reduced compared with latency in the serial programming (SP) condition and also to the latency of single saccades in control conditions. The fMRI analysis revealed greater activity (BOLD response) in the frontal and parietal eye fields for the PP condition compared with the SP double-step condition and when compared with the single-saccade control conditions. By contrast, activity in the supplementary eye fields was greater for the double-step condition than the single-step condition but did not distinguish between the PP and SP requirements. The role of the frontal eye fields in PP may be related to the advanced temporal preparation and increased salience of the second saccade goal that may mediate activity in other downstream structures, such as the superior colliculus. The parietal lobes may be involved in the preparation for spatial remapping, which is required in double-step conditions. The supplementary eye fields appear to have a more general role in planning saccade sequences that may be related to error monitoring and the control over the execution of the correct sequence of responses.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bianca R. Baltaretu ◽  
Benjamin T. Dunkley ◽  
W. Dale Stevens ◽  
J. Douglas Crawford

AbstractPrevious neuroimaging studies have shown that inferior parietal and ventral occipital cortex are involved in the transsaccadic processing of visual object orientation. Here, we investigated whether the same areas are also involved in transsaccadic processing of a different feature, namely, spatial frequency. We employed a functional magnetic resonance imaging paradigm where participants briefly viewed a grating stimulus with a specific spatial frequency that later reappeared with the same or different frequency, after a saccade or continuous fixation. First, using a whole-brain Saccade > Fixation contrast, we localized two frontal (left precentral sulcus and right medial superior frontal gyrus), four parietal (bilateral superior parietal lobule and precuneus), and four occipital (bilateral cuneus and lingual gyri) regions. Whereas the frontoparietal sites showed task specificity, the occipital sites were also modulated in a saccade control task. Only occipital cortex showed transsaccadic feature modulations, with significant repetition enhancement in right cuneus. These observations (parietal task specificity, occipital enhancement, right lateralization) are consistent with previous transsaccadic studies. However, the specific regions differed (ventrolateral for orientation, dorsomedial for spatial frequency). Overall, this study supports a general role for occipital and parietal cortex in transsaccadic vision, with a specific role for cuneus in spatial frequency processing.


1962 ◽  
Vol 84 (3) ◽  
pp. 317-325 ◽  
Author(s):  
D. E. Abbott ◽  
S. J. Kline

Results are presented for flow patterns over backward facing steps covering a wide range of geometric variables. Velocity profile measurements are given for both single and double steps. The stall region is shown to consist of a complex pattern involving three distinct regions. The double step contains an assymmetry for large expansions, but approaches the single-step configuration with symmetric stall regions for small values of area ratio. No effect on flow pattern or reattachment length is found for a wide range of Reynolds numbers and turbulence intensities, provided the flow is fully turbulent before the step.


2018 ◽  
Vol 921 ◽  
pp. 195-201 ◽  
Author(s):  
Jin Jun Xu ◽  
Mang Jiang

The microstructure evolution and composition distribution of the cast Al-3.5Cu-1.5Li-0.11Zr alloy during single-step and double-step homogenization were studied with the help of the optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and transmission electron microscopy (TEM) methods. The results show that severe dendrite segregation exists in the experimental alloy. Six different homogenization treatments, conventional one-stage homogenization and double-stage homogenization are carried out, and the best homogenization treatment of the experimental alloys was achieved. Moreover, the precipitation of Al3Zr particles was significantly different after two kinds of homogenization in the experimental alloy. Compared with the single-stage homogenization, a finer particle size and distribution more diffuse of Al3Zr particles can be obtained in the double-stage homogenization treatment.


2018 ◽  
Vol 48 (7) ◽  
pp. 1092-1101 ◽  
Author(s):  
H. Hart ◽  
L. Lim ◽  
M. A. Mehta ◽  
A. Simmons ◽  
K. A. H. Mirza ◽  
...  

AbstractBackgroundChildren with a history of maltreatment suffer from altered emotion processing but the neural basis of this phenomenon is unknown. This pioneering functional magnetic resonance imaging (fMRI) study investigated the effects of severe childhood maltreatment on emotion processing while controlling for psychiatric conditions, medication and substance abuse.MethodTwenty medication-naive, substance abuse-free adolescents with a history of childhood abuse, 20 psychiatric control adolescents matched on psychiatric diagnoses but with no maltreatment and 27 healthy controls underwent a fMRI emotion discrimination task comprising fearful, angry, sad happy and neutral dynamic facial expressions.ResultsMaltreated participants responded faster to fearful expressions and demonstrated hyper-activation compared to healthy controls of classical fear-processing regions of ventromedial prefrontal cortex (vmPFC) and anterior cingulate cortex, which survived at a more lenient threshold relative to psychiatric controls. Functional connectivity analysis, furthermore, demonstrated reduced connectivity between left vmPFC and insula for fear in maltreated participants compared to both healthy and psychiatric controls.ConclusionsThe findings show that people who have experienced childhood maltreatment have enhanced fear perception, both at the behavioural and neurofunctional levels, associated with enhanced fear-related ventromedial fronto-cingulate activation and altered functional connectivity with associated limbic regions. Furthermore, the connectivity adaptations were specific to the maltreatment rather than to the developing psychiatric conditions, whilst the functional changes were only evident at trend level when compared to psychiatric controls, suggesting a continuum. The neurofunctional hypersensitivity of fear-processing networks may be due to childhood over-exposure to fear in people who have been abused.


2020 ◽  
Vol 30 (6) ◽  
pp. 3827-3837 ◽  
Author(s):  
Alex Kafkas ◽  
Andrew R Mayes ◽  
Daniela Montaldi

Abstract The neural basis of memory is highly distributed, but the thalamus is known to play a particularly critical role. However, exactly how the different thalamic nuclei contribute to different kinds of memory is unclear. Moreover, whether thalamic connectivity with the medial temporal lobe (MTL), arguably the most fundamental memory structure, is critical for memory remains unknown. We explore these questions using an fMRI recognition memory paradigm that taps familiarity and recollection (i.e., the two types of memory that support recognition) for objects, faces, and scenes. We show that the mediodorsal thalamus (MDt) plays a material-general role in familiarity, while the anterior thalamus plays a material-general role in recollection. Material-specific regions were found for scene familiarity (ventral posteromedial and pulvinar thalamic nuclei) and face familiarity (left ventrolateral thalamus). Critically, increased functional connectivity between the MDt and the parahippocampal (PHC) and perirhinal cortices (PRC) of the MTL underpinned increases in reported familiarity confidence. These findings suggest that familiarity signals are generated through the dynamic interaction of functionally connected MTL-thalamic structures.


2019 ◽  
Vol 6 (3) ◽  
pp. 181908 ◽  
Author(s):  
Steven Brown ◽  
Peter Cockett ◽  
Ye Yuan

The current study represents a first attempt at examining the neural basis of dramatic acting. While all people play multiple roles in daily life—for example, ‘spouse' or ‘employee'—these roles are all facets of the ‘self' and thus of the first-person (1P) perspective. Compared to such everyday role playing, actors are required to portray other people and to adopt their gestures, emotions and behaviours. Consequently, actors must think and behave not as themselves but as the characters they are pretending to be. In other words, they have to assume a ‘fictional first-person' (Fic1P) perspective. In this functional MRI study, we sought to identify brain regions preferentially activated when actors adopt a Fic1P perspective during dramatic role playing. In the scanner, university-trained actors responded to a series of hypothetical questions from either their own 1P perspective or from that of Romeo (male participants) or Juliet (female participants) from Shakespeare's drama. Compared to responding as oneself, responding in character produced global reductions in brain activity and, particularly, deactivations in the cortical midline network of the frontal lobe, including the dorsomedial and ventromedial prefrontal cortices. Thus, portraying a character through acting seems to be a deactivation-driven process, perhaps representing a ‘loss of self'.


2020 ◽  
Vol 856 ◽  
pp. 36-42
Author(s):  
Chuleeporn Paa-Rai

This work investigates the effect of rejuvenation heat treatment, with double-step solution treatment at the temperature from 1150 °C to 1200 °C, on the recovered microstructure of IN-738 cast superalloy. The superalloy has been long-term exposed as a turbine blade in a gas turbine prior to this study. After double solution treatment and aging at 845 °C for 12 h and 24 h, the recovered microstructures were examined by using a scanning electron microscope. Coarse γ΄ particles, that have presented in damaged microstructures, could not be observed in the samples after the rejuvenation heat treatment. In addition, the image analysis illustrates that the reprecipitated γ΄ particles in the samples with double-step solution treatments increase significantly in sizes during aging than that in the samples with the single-step solution treatment. Furthermore, the measurement of the samples hardness presents that the as-receive sample hardness is improved after rejuvenation heat treatment studied in this work.


Sign in / Sign up

Export Citation Format

Share Document