scholarly journals Network topology of the marmoset connectome

2020 ◽  
Vol 4 (4) ◽  
pp. 1181-1196
Author(s):  
Zhen-Qi Liu ◽  
Ying-Qiu Zheng ◽  
Bratislav Misic

The brain is a complex network of interconnected and interacting neuronal populations. Global efforts to understand the emergence of behavior and the effect of perturbations depend on accurate reconstruction of white matter pathways, both in humans and in model organisms. An emerging animal model for next-generation applied neuroscience is the common marmoset ( Callithrix jacchus). A recent open respository of retrograde and anterograde tract tracing presents an opportunity to systematically study the network architecture of the marmoset brain (Marmoset Brain Architecture Project; http://www.marmosetbrain.org ). Here we comprehensively chart the topological organization of the mesoscale marmoset cortico-cortical connectome. The network possesses multiple nonrandom attributes that promote a balance between segregation and integration, including near-minimal path length, multiscale community structure, a connective core, a unique motif composition, and multiple cavities. Altogether, these structural attributes suggest a link between network architecture and function. Our findings are consistent with previous reports across a range of species, scales, and reconstruction technologies, suggesting a small set of organizational principles universal across phylogeny. Collectively, these results provide a foundation for future anatomical, functional, and behavioral studies in this model organism.

2014 ◽  
Vol 5 (5) ◽  
pp. 371-382 ◽  
Author(s):  
Suyan Li ◽  
Sampada Joshee ◽  
Anju Vasudevan

AbstractMidbrain GABA neurons, endowed with multiple morphological, physiological and molecular characteristics as well as projection patterns are key players interacting with diverse regions of the brain and capable of modulating several aspects of behavior. The diversity of these GABA neuronal populations based on their location and function in the dorsal, medial or ventral midbrain has challenged efforts to rapidly uncover their developmental regulation. Here we review recent developments that are beginning to illuminate transcriptional control of GABA neurons in the embryonic midbrain (mesencephalon) and discuss its implications for understanding and treatment of neurological and psychiatric illnesses.


2020 ◽  
Vol 11 ◽  
Author(s):  
Óscar M. Lezcano ◽  
Miriam Sánchez-Polo ◽  
José L. Ruiz ◽  
Elena Gómez-Díaz

The principles and function of chromatin and nuclear architecture have been extensively studied in model organisms, such as Drosophila melanogaster. However, little is known about the role of these epigenetic processes in transcriptional regulation in other insects including mosquitoes, which are major disease vectors and a worldwide threat for human health. Some of these life-threatening diseases are malaria, which is caused by protozoan parasites of the genus Plasmodium and transmitted by Anopheles mosquitoes; dengue fever, which is caused by an arbovirus mainly transmitted by Aedes aegypti; and West Nile fever, which is caused by an arbovirus transmitted by Culex spp. In this contribution, we review what is known about chromatin-associated mechanisms and the 3D genome structure in various mosquito vectors, including Anopheles, Aedes, and Culex spp. We also discuss the similarities between epigenetic mechanisms in mosquitoes and the model organism Drosophila melanogaster, and advocate that the field could benefit from the cross-application of state-of-the-art functional genomic technologies that are well-developed in the fruit fly. Uncovering the mosquito regulatory genome can lead to the discovery of unique regulatory networks associated with the parasitic life-style of these insects. It is also critical to understand the molecular interactions between the vectors and the pathogens that they transmit, which could hold the key to major breakthroughs on the fight against mosquito-borne diseases. Finally, it is clear that epigenetic mechanisms controlling mosquito environmental plasticity and evolvability are also of utmost importance, particularly in the current context of globalization and climate change.


Author(s):  
Joanita F. D’Souza ◽  
Nicholas S. C. Price ◽  
Maureen A. Hagan

AbstractThe technology, methodology and models used by visual neuroscientists have provided great insights into the structure and function of individual brain areas. However, complex cognitive functions arise in the brain due to networks comprising multiple interacting cortical areas that are wired together with precise anatomical connections. A prime example of this phenomenon is the frontal–parietal network and two key regions within it: the frontal eye fields (FEF) and lateral intraparietal area (area LIP). Activity in these cortical areas has independently been tied to oculomotor control, motor preparation, visual attention and decision-making. Strong, bidirectional anatomical connections have also been traced between FEF and area LIP, suggesting that the aforementioned visual functions depend on these inter-area interactions. However, advancements in our knowledge about the interactions between area LIP and FEF are limited with the main animal model, the rhesus macaque, because these key regions are buried in the sulci of the brain. In this review, we propose that the common marmoset is the ideal model for investigating how anatomical connections give rise to functionally-complex cognitive visual behaviours, such as those modulated by the frontal–parietal network, because of the homology of their cortical networks with humans and macaques, amenability to transgenic technology, and rich behavioural repertoire. Furthermore, the lissencephalic structure of the marmoset brain enables application of powerful techniques, such as array-based electrophysiology and optogenetics, which are critical to bridge the gaps in our knowledge about structure and function in the brain.


Author(s):  
I. Basak ◽  
H. E. Wicky ◽  
K. O. McDonald ◽  
J. B. Xu ◽  
J. E. Palmer ◽  
...  

AbstractNeuronal Ceroid Lipofuscinosis (NCL), also known as Batten disease, is an incurable childhood brain disease. The thirteen forms of NCL are caused by mutations in thirteen CLN genes. Mutations in one CLN gene, CLN5, cause variant late-infantile NCL, with an age of onset between 4 and 7 years. The CLN5 protein is ubiquitously expressed in the majority of tissues studied and in the brain, CLN5 shows both neuronal and glial cell expression. Mutations in CLN5 are associated with the accumulation of autofluorescent storage material in lysosomes, the recycling units of the cell, in the brain and peripheral tissues. CLN5 resides in the lysosome and its function is still elusive. Initial studies suggested CLN5 was a transmembrane protein, which was later revealed to be processed into a soluble form. Multiple glycosylation sites have been reported, which may dictate its localisation and function. CLN5 interacts with several CLN proteins, and other lysosomal proteins, making it an important candidate to understand lysosomal biology. The existing knowledge on CLN5 biology stems from studies using several model organisms, including mice, sheep, cattle, dogs, social amoeba and cell cultures. Each model organism has its advantages and limitations, making it crucial to adopt a combinatorial approach, using both human cells and model organisms, to understand CLN5 pathologies and design drug therapies. In this comprehensive review, we have summarised and critiqued existing literature on CLN5 and have discussed the missing pieces of the puzzle that need to be addressed to develop an efficient therapy for CLN5 Batten disease.


2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Julie Sullivan ◽  
Kalpana Karra ◽  
Sierra A. T. Moxon ◽  
Andrew Vallejos ◽  
Howie Motenko ◽  
...  

Abstract Model organisms are widely used for understanding basic biology and have significantly contributed to the study of human disease. In recent years, genomic analysis has provided extensive evidence of widespread conservation of gene sequence and function amongst eukaryotes, allowing insights from model organisms to help decipher gene function in a wider range of species. The InterMOD consortium is developing an infrastructure based around the InterMine data warehouse system to integrate genomic and functional data from a number of key model organisms, leading the way to improved cross-species research. So far including budding yeast, nematode worm, fruit fly, zebrafish, rat and mouse, the project has set up data warehouses, synchronized data models and created analysis tools and links between data from different species. The project unites a number of major model organism databases, improving both the consistency and accessibility of comparative research, to the benefit of the wider scientific community.


Author(s):  
Caroline A. Miller ◽  
Laura L. Bruce

The first visual cortical axons arrive in the cat superior colliculus by the time of birth. Adultlike receptive fields develop slowly over several weeks following birth. The developing cortical axons go through a sequence of changes before acquiring their adultlike morphology and function. To determine how these axons interact with neurons in the colliculus, cortico-collicular axons were labeled with biocytin (an anterograde neuronal tracer) and studied with electron microscopy.Deeply anesthetized animals received 200-500 nl injections of biocytin (Sigma; 5% in phosphate buffer) in the lateral suprasylvian visual cortical area. After a 24 hr survival time, the animals were deeply anesthetized and perfused with 0.9% phosphate buffered saline followed by fixation with a solution of 1.25% glutaraldehyde and 1.0% paraformaldehyde in 0.1M phosphate buffer. The brain was sectioned transversely on a vibratome at 50 μm. The tissue was processed immediately to visualize the biocytin.


Hand ◽  
2021 ◽  
pp. 155894472199246
Author(s):  
David D. Rivedal ◽  
Meng Guo ◽  
James Sanger ◽  
Aaron Morgan

Targeted muscle reinnervation (TMR) has been shown to improve phantom and neuropathic pain in both the acute and chronic amputee population. Through rerouting of major peripheral nerves into a newly denervated muscle, TMR harnesses the plasticity of the brain, helping to revert the sensory cortex back toward the preinsult state, effectively reducing pain. We highlight a unique case of an above-elbow amputee for sarcoma who was initially treated with successful transhumeral TMR. Following inadvertent nerve biopsy of a TMR coaptation site, his pain returned, and he was unable to don his prosthetic. Revision of his TMR to a more proximal level was performed, providing improved pain and function of the amputated arm. This is the first report to highlight the concept of secondary neuroplasticity and successful proximal TMR revision in the setting of multiple insults to the same extremity.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2226
Author(s):  
Sazia Kunvar ◽  
Sylwia Czarnomska ◽  
Cino Pertoldi ◽  
Małgorzata Tokarska

The European bison is a non-model organism; thus, most of its genetic and genomic analyses have been performed using cattle-specific resources, such as BovineSNP50 BeadChip or Illumina Bovine 800 K HD Bead Chip. The problem with non-specific tools is the potential loss of evolutionary diversified information (ascertainment bias) and species-specific markers. Here, we have used a genotyping-by-sequencing (GBS) approach for genotyping 256 samples from the European bison population in Bialowieza Forest (Poland) and performed an analysis using two integrated pipelines of the STACKS software: one is de novo (without reference genome) and the other is a reference pipeline (with reference genome). Moreover, we used a reference pipeline with two different genomes, i.e., Bos taurus and European bison. Genotyping by sequencing (GBS) is a useful tool for SNP genotyping in non-model organisms due to its cost effectiveness. Our results support GBS with a reference pipeline without PCR duplicates as a powerful approach for studying the population structure and genotyping data of non-model organisms. We found more polymorphic markers in the reference pipeline in comparison to the de novo pipeline. The decreased number of SNPs from the de novo pipeline could be due to the extremely low level of heterozygosity in European bison. It has been confirmed that all the de novo/Bos taurus and Bos taurus reference pipeline obtained SNPs were unique and not included in 800 K BovineHD BeadChip.


Author(s):  
Christopher L. Hartl ◽  
Gokul Ramaswami ◽  
William G. Pembroke ◽  
Sandrine Muller ◽  
Greta Pintacuda ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anastasiya Börsch ◽  
Daniel J. Ham ◽  
Nitish Mittal ◽  
Lionel A. Tintignac ◽  
Eugenia Migliavacca ◽  
...  

AbstractSarcopenia, the age-related loss of skeletal muscle mass and function, affects 5–13% of individuals aged over 60 years. While rodents are widely-used model organisms, which aspects of sarcopenia are recapitulated in different animal models is unknown. Here we generated a time series of phenotypic measurements and RNA sequencing data in mouse gastrocnemius muscle and analyzed them alongside analogous data from rats and humans. We found that rodents recapitulate mitochondrial changes observed in human sarcopenia, while inflammatory responses are conserved at pathway but not gene level. Perturbations in the extracellular matrix are shared by rats, while mice recapitulate changes in RNA processing and autophagy. We inferred transcription regulators of early and late transcriptome changes, which could be targeted therapeutically. Our study demonstrates that phenotypic measurements, such as muscle mass, are better indicators of muscle health than chronological age and should be considered when analyzing aging-related molecular data.


Sign in / Sign up

Export Citation Format

Share Document