The Role of Biological Rhythms in the Photoperiodic Regulation of Seasonal Breeding in the Stickleback Gasterosteus a Culea Tus L

1984 ◽  
Vol 35 (1-2) ◽  
pp. 14-31 ◽  
Author(s):  
Bertha Baggerman
2021 ◽  
Vol 22 (6) ◽  
pp. 2906
Author(s):  
Urszula Talar ◽  
Agnieszka Kiełbowicz-Matuk

B-box proteins represent diverse zinc finger transcription factors and regulators forming large families in various plants. A unique domain structure defines them—besides the highly conserved B-box domains, some B-box (BBX) proteins also possess CCT domain and VP motif. Based on the presence of these specific domains, they are mostly classified into five structural groups. The particular members widely differ in structure and fulfill distinct functions in regulating plant growth and development, including seedling photomorphogenesis, the anthocyanins biosynthesis, photoperiodic regulation of flowering, and hormonal pathways. Several BBX proteins are additionally involved in biotic and abiotic stress response. Overexpression of some BBX genes stimulates various stress-related genes and enhanced tolerance to different stresses. Moreover, there is evidence of interplay between B-box and the circadian clock mechanism. This review highlights the role of BBX proteins as a part of a broad regulatory network in crop plants, considering their participation in development, physiology, defense, and environmental constraints. A description is also provided of how various BBX regulators involved in stress tolerance were applied in genetic engineering to obtain stress tolerance in transgenic crops.


2021 ◽  
Vol 74 (7) ◽  
pp. 1750-1753
Author(s):  
Kateryna A. Tarianyk ◽  
Nataliya V. Lytvynenko ◽  
Anastasiia D. Shkodina ◽  
Igor P. Kaidashev

The paper is aimed at the analysis of the role of the circadian regulation of ghrelin levels in patients with Parkinson’s disease. Based on the literature data, patients with Parkinson’s disease have clinical fluctuations in the symptoms of the disease, manifested by the diurnal changes in motor activity, autonomic functions, sleep-wake cycle, visual function, and the efficacy of dopaminergic therapy. Biological rhythms are controlled by central and peripheral oscillators which links with dopaminergic neurotransmission – core of the pathogenesis of Parkinson`s disease. Circadian system is altered in Parkinson`s disease due to that ghrelin fluctuations may be changed. Ghrelin is potential food-entrainable oscillator because it is linked with clock genes expression. In Parkinson`s disease this hormone may induce eating behavior changing and as a result metabolic disorder. The “hunger hormone” ghrelin can be a biomarker of the Parkinson’s disease, and the study of its role in the pathogenesis, as well as its dependence on the period of the day, intake of levodopa medications to improve the effectiveness of treatment is promising.


Author(s):  
A. I. Khavkin ◽  
N. M. Bogdanova ◽  
V. P. Novikova

.Both changes in diet and pathological conditions caused by an infectious agent, allergic or autoimmune inflammatory process, affect the biological rhythms of the digestive tract, which negatively affects the intestinal microbiota and increases the permeability of the intestinal mucosa. The altered microbiota potentiates inflammation and causes a “vicious circle”. The zonulin protein is the agent that modulates the density of intercellular connections. The review presents data on the biological role of zonulin, correction of its synthesis violation with the help of functional products for baby food.


2020 ◽  
Author(s):  
Zihao Zhu ◽  
Marcel Quint ◽  
Muhammad Usman Anwer

SummaryPredictable changes in light and temperature during a diurnal cycle are major entrainment cues that enable the circadian clock to generate internal biological rhythms that are synchronized with the external environment. With the average global temperature predicted to keep increasing, the intricate light-temperature coordination that is necessary for clock functionality is expected to be seriously affected. Hence, understanding how temperature signals are perceived by the circadian clock has become an important issue, especially in light of climate change scenarios. In Arabidopsis, the clock component EARLY FLOWERING 3 (ELF3) not only serves as an essential light Zeitnehmer, but also functions as a thermosensor participating in thermomorphogenesis. However, the role of ELF3 in temperature entrainment of the circadian clock is not fully understood. Here, we report that ELF3 is essential for delivering temperature input to the clock. We demonstrate that in the absence of ELF3, the oscillator was unable to properly respond to temperature changes, resulting in an impaired gating of thermoresponses. Consequently, clock-controlled physiological processes such as rhythmic growth and cotyledon movement were disturbed. Together, our results reveal that ELF3 is an essential Zeitnehmer for temperature sensing of the oscillator, and thereby for coordinating the rhythmic control of thermoresponsive physiological outputs.


2020 ◽  
Vol 19 (5) ◽  
pp. 132-139
Author(s):  
A.I. Khavkin ◽  
◽  
N.M. Bogdanova ◽  
V.P. Novikova ◽  
D.V. Yudina ◽  
...  

Lifestyle change, including diet changes, often lead to an impairment of biological rhythms regulating production of gastrointestinal hormones, enzymes, neuropeptides, and various cytokines that ensure proper functioning of the digestive tract. Such changes are almost always associated with microbiota disorders and increase permeability of the intestinal mucosa. Zonulin is a diagnostic marker regulating intestinal wall stability and modulating the density of intercellular connections. Its biological role and mechanism of action are being actively studied now. This literature review aims to summarize the results of latest studies published over the last five years analyzing the role of zonulin in various diseases and conditions. The article also covers some aspects suggesting that zonulin can be used as a marker of normal functioning of the intestinal barrier not only in therapeutic, but also in obstetric and pediatric practice. Key words: biomarker, inflammatory cytokines, gestation, depression, zonulin, intestinal barrier, metabolism, microbiota, intestinal wall permeability


2012 ◽  
Vol 12 (1) ◽  
pp. 15-23
Author(s):  
Maria Romerowicz-Misielak ◽  
Marek Koziorowski

The Gonadotropins Subunits, GNRH and GNRH Receptor Gene Expression and Role of Carbon Monoxide in Seasonal Breeding AnimalsSeasonality in reproduction occurs mainly in wild species and it is the result of natural selection. Signals to start or finish the period of reproductive activity, both environmental and hormonal depend on the neuroendocrine pathway - synthesis and secretion of pituitary hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), under the control of the hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Variable frequency of GnRH pulses is not only the main factor governing primary and preovulatory release of gonadotropins, but it can also play a role in the specific transcriptional activity of gonadotropin subunit genes (LHβ, FSHβ and Cga). However, changes in release of GnRH pulse pattern do not explain the preferential stimulation of the synthesis and secretion of gonadotropins in the annual reproductive cycle. In this regulation also a GnRH independent mechanism participates. It seems that the main factor responsible for the occurrence of the seasonal modulation of reproduction in sheep and other mammals, is significant changes in response of GnRH systems to gonadal steroids. The effect of carbon monoxide on regulation of the hypothalamic-pituitary-gonadal axis has not been studied to date. There is substantial evidence to suggest that it may play a role in the transduction of information on day length. The presence of heme oxygenase-2 in hypothalamic areas important for regulation of pituitary secretory function and in the pituitary itself suggests that carbon monoxide, the product of this enzyme, may participate in the regulation of hormone secretion by the pineal gland.


2017 ◽  
Vol 41 (S1) ◽  
pp. S284-S285
Author(s):  
A. Kandeger ◽  
Y. Selvi

ObjectiveIncreasing prevalence of obesity in the world and increasing role of processed foods in daily life has led to become the focal point of food addiction. This study aims to investigation of food addiction and impulsivity relations biological rhythms differences and insomnia in university students.MethodOne thousand and five hundred students planned to participate who studies in Konya Selcuk University central campus. Participants were to fill out the test during their classes under physician supervision. The volunteers completed a package of psychological instruments including the Morningness–Eveningness Questionnaire, Yale Food Addiction Scale, Insomnia Severity Index, and Barratt Impulsiveness Scale administered by two investigators in their classrooms.ResultsIn total, 1323 forms were suitable for statistical analysis. The mean age was 20.83, mean BMI was 22.02. Food addiction prevalence was 18.2%. Our study showed that association between the eveningness type and food addiction (P < 0.045). Also, the eveningness type and insomnia were in positive correlation in impulsivity (P < 0.001).ConclusionThis study has explored the association between eveningness type of biological rhythms, food addiction, insomnia and impulsivity.Disclosure of interestThe authors have not supplied their declaration of competing interest.


Sign in / Sign up

Export Citation Format

Share Document