Role of the surface coat of Romanomermis culicivorax in immune evasion

Nematology ◽  
2007 ◽  
Vol 9 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Edward Platzer ◽  
Randy Gaugler ◽  
Muhammad Shamseldean

AbstractInteractions of the mermithid nematode Romanomermis culicivorax with the immune system of mosquito larvae were examined by scanning electron microscopy. The host immune system rapidly recognised invading parasites, as granulocytes and discharged granules were observed attached to parasitic nematodes within 5 min. Melanin deposition was infrequently observed. As a counter measure, the parasites secreted and shed an extracellular surface coat which aided immune evasion. During the first 4 days of infection, when parasite growth was limited, the coat served as a disposable, renewable barrier between parasite and host that was intermittently shed to cleanse the nematode of adhering host immune products. In the later infection phase the parasite grew rapidly and was beyond the effect of the depleted host immune response. The broad host range of R. culcivorax within culicines may be partly a function of the nonspecific defence it mounts against the host immune system. In summary, shedding of the surface coat is an adaptive counter response by R. culicivorax to the mosquito immune reaction to infection and provides a classic example of host-parasite coevolution.

2020 ◽  
Vol 11 (SPL1) ◽  
pp. 259-261
Author(s):  
Aamir Khan ◽  
Rajni K. Gurmule

Vasavaleha is one of the best medicine given for respiratory diseases. Corona viruses typically affect the respiratory system, causing symptoms such as coughing, fever and shortness of breath. It also affects host immune system of human body. Spreading rate of this disease is very high. Whole world is seeking for the treatment which can uproots this diseases. There in no vaccine available till date against this pandemic disease. Ayurveda mainly focuses on prevention of diseases alongwith its total cure. Rajyakshma Vyadhi is MadhyamMarga Roga as per Ayurveda. It shows many symptoms such as Kasa, Shwasa etc. By overall view of Covid 19, shows its resemblance with Rajyakshma Vyadhi described in Ayurveda. Vasavaleha is a Kalpa which is described in Rogadhikara of Rajyakshma. It shows Kasahara, Shwashara properties. It consists of Vasa, Pipalli, Madhu and Goghrita. These components shows actions like bronchodilation, antitussive effect and many more other actions. Pipalli shows important Rasayana effect. So in present review, we have tried to focus on role of Vasavaleha in the management of Covid 19. This can be used as preventive as well as adjuvant medication in treating Covid 19. There is need of further clinical research to rule of exact action of Vasavaleha against Covid 19.


2020 ◽  
Vol 19 (7) ◽  
pp. 509-526
Author(s):  
Qin Huang ◽  
Fang Yu ◽  
Di Liao ◽  
Jian Xia

: Recent studies implicate microbiota-brain communication as an essential factor for physiology and pathophysiology in brain function and neurodevelopment. One of the pivotal mechanisms about gut to brain communication is through the regulation and interaction of gut microbiota on the host immune system. In this review, we will discuss the role of microbiota-immune systeminteractions in human neurological disorders. The characteristic features in the development of neurological diseases include gut dysbiosis, the disturbed intestinal/Blood-Brain Barrier (BBB) permeability, the activated inflammatory response, and the changed microbial metabolites. Neurological disorders contribute to gut dysbiosis and some relevant metabolites in a top-down way. In turn, the activated immune system induced by the change of gut microbiota may deteriorate the development of neurological diseases through the disturbed gut/BBB barrier in a down-top way. Understanding the characterization and identification of microbiome-immune- brain signaling pathways will help us to yield novel therapeutic strategies by targeting the gut microbiome in neurological disease.


2021 ◽  
pp. 1-10
Author(s):  
Bader Alshehri

Breast cancer being the most malignant and lethal disease persistent among women globally. Immunotherapy as a new treatment modality has emerged in understanding the loopholes in the treatment of breast cancer which is mainly attributed to the potential of tumor cells to evade and survive the immune response by developing various strategies. Therefore, improved understanding of the immune evasion by cancer cells and the monoclonal antibodies against PD- and PD-L1 can help us in the diagnosis of this malignancy. Here in this article, I have highlighted that in addition to focusing on other strategies for breast cancer treatment, the involvement of immune system in breast cancer is vital for the understanding of this malignancy. Further, the complete involvement of immune system in the relapse or recurrence of the breast tumor and have also highlighted the role of vaccines, PD-1 and CTLA-4 with the recent advances in the field. Moreover, in addition to the application of immunotherapy as a sole therapy, combinations of immunotherapy with various strategies like targeting it with MEK inhibitors, Vaccines, chemotherapy and PARP inhibitor has shown to have significant benefits is also discussed in this article.


2021 ◽  
Vol 28 ◽  
Author(s):  
Amir Hossein Kheirkhah ◽  
Seyed Hossein Shahcheraghi ◽  
Malihe lotfi ◽  
Marzieh lotfi ◽  
Sanaz Raeisi ◽  
...  

: Given that conventional therapies are ineffective for COVID-19, obtained exosomes from stem cells have been proposed as a sustainable and effective treatment. Exosomes are subsets with lengths between 30 and 100 nanometers, and they can be secreted by different cells. Exosomes are containing different types of miRNAs, mRNAs, and different proteins. The role of immune system modulation of exosomes of mesenchymal stem cells has been studied and confirmed in more than one study. Exosome miRNAs detect and reduce cytokines that cause cytokine storms such as IL-7, IL-2, IL-6, etc. These miRNAs include miR-21, miR-24, miR-124, miR-145, etc. The risks associated with treatment with exosomes from different cells are relatively small compared to other treatments because transplanted cells do not stimulate the host immune system and also has reduced infection transmission. Due to the ineffectiveness of existing drugs in reducing inflammation and preventing cytokine storms, the use of immune-boosting systems may be suggested as another way to control cytokine storm.


Life ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 345
Author(s):  
Arianna Di Stadio ◽  
Claudio Costantini ◽  
Giorgia Renga ◽  
Marilena Pariano ◽  
Giampietro Ricci ◽  
...  

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is characterized by variable clinical presentation that ranges from asymptomatic to fatal multi-organ damage. The site of entry and the response of the host to the infection affect the outcomes. The role of the upper airways and the nasal barrier in the prevention of infection is increasingly being recognized. Besides the epithelial lining and the local immune system, the upper airways harbor a community of microorganisms, or microbiota, that takes an active part in mucosal homeostasis and in resistance to infection. However, the role of the upper airway microbiota in COVID-19 is not yet completely understood and likely goes beyond protection from viral entry to include the regulation of the immune response to the infection. Herein, we discuss the hypothesis that restoring endogenous barriers and anti-inflammatory pathways that are defective in COVID-19 patients might represent a valid strategy to reduce infectivity and ameliorate clinical symptomatology.


Gut ◽  
2019 ◽  
Vol 68 (6) ◽  
pp. 1108-1114 ◽  
Author(s):  
Maria Gloria Dominguez-Bello ◽  
Filipa Godoy-Vitorino ◽  
Rob Knight ◽  
Martin J Blaser

The host-microbiome supraorganism appears to have coevolved and the unperturbed microbial component of the dyad renders host health sustainable. This coevolution has likely shaped evolving phenotypes in all life forms on this predominantly microbial planet. The microbiota seems to exert effects on the next generation from gestation, via maternal microbiota and immune responses. The microbiota ecosystems develop, restricted to their epithelial niches by the host immune system, concomitantly with the host chronological development, providing early modulation of physiological host development and functions for nutrition, immunity and resistance to pathogens at all ages. Here, we review the role of the microbiome in human development, including evolutionary considerations, and the maternal/fetal relationships, contributions to nutrition and growth. We also discuss what constitutes a healthy microbiota, how antimicrobial modern practices are impacting the human microbiota, the associations between microbiota perturbations, host responses and diseases rocketing in urban societies and potential for future restoration.


2019 ◽  
Vol 92 ◽  
pp. 802-812
Author(s):  
Iria Folgueira ◽  
Jesús Lamas ◽  
Ana Paula De Felipe ◽  
Rosa Ana Sueiro ◽  
José Manuel Leiro

2015 ◽  
Vol 112 (49) ◽  
pp. 15178-15183 ◽  
Author(s):  
Alvaro Molina-Cruz ◽  
Gaspar E. Canepa ◽  
Nitin Kamath ◽  
Noelle V. Pavlovic ◽  
Jianbing Mu ◽  
...  

Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the “lock-and-key theory” of P. falciparum globalization, is proposed, and its implications are discussed.


Sign in / Sign up

Export Citation Format

Share Document