Nematicidal activity of gallic acid purified from Terminalia nigrovenulosa bark against the root-knot nematode Meloidogyne incognita

Nematology ◽  
2013 ◽  
Vol 15 (5) ◽  
pp. 507-518 ◽  
Author(s):  
Dang-Minh-Chanh Nguyen ◽  
Dong-Jun Seo ◽  
Van-Nam Nguyen ◽  
Kil-Yong Kim ◽  
Ro-Dong Park ◽  
...  

The nematicidal activity of Terminalia nigrovenulosa bark (TNB) and its purified compound were assayed against Meloidogyne incognita in vitro. The nematicidal compound was isolated from TNB using silica gel column and Sephadex LH-20 chromatography combined with thin-layer chromatography and high performance liquid chromatography. Structural identification of the nematicidal compound was conducted using 1H-nuclear magnetic resonance (NMR), 13C-NMR and liquid chromatography-tandem mass spectrometry. We found that the nematicidal compound purified from TNB was gallic acid (GA) or 3,4,5-trihydroxy benzoic acid. Nematicidal activity bioassays revealed that GA treatment resulted in 20.3, 37.5, 73.3, 88.3 and 95.8% hatch inhibition at 0, 0.25, 0.5, 1.0 and 2.0 mg ml−1 after 3 days, respectively, of incubation. Eggshells appeared to be deformed and destroyed at 2 and 3 days after incubation with a GA concentration of 1.0 mg ml−1, respectively. Additionally, after treatment with a GA concentration of 1.0 mg ml−1, mortality of second-stage juveniles of M. incognita was 65.0, 75.0, 96.7 and 100% at 3, 6, 9 and 12 h incubation, respectively.

2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


Nematology ◽  
2013 ◽  
Vol 15 (5) ◽  
pp. 545-555 ◽  
Author(s):  
Yong Seong Lee ◽  
Muhammad Anees ◽  
Hae Nam Hyun ◽  
Kil Yong Kim

Lysobacter antibioticus HS124 is an antagonistic bacterial strain that was previously isolated from the rhizosphere soil of pepper and showed an enhanced ability to produce lytic enzymes as well as an antibiotic that was identified as 4-hydroxyphenylacetic acid (4-HPAA). In the present study, nematicidal activity of the strain and 4-HPAA against the root-knot nematode, Meloidogyne incognita, causing disease in tomato was investigated in both in vitro and in vivo conditions. For this purpose, adding different concentrations of culture filtrate, crude extract collected from extraction with ethyl acetate and 4-HPAA, in 24-well plates containing ca 500 eggs or 300 second-stage juveniles (J2), significantly decreased the rate of nematode hatch and caused higher mortality of J2 compared with the control treatments. Nematicidal activity of the bacterial strain was further confirmed by conducting pot experiments in which tomato plants were inoculated with M. incognita and the HS124 culture (BC). The control pots were treated with commercial nematicide (CN, 5% Ethoprophos), tap water (TW) or the non-inoculated bacterial culture medium (BCM). In these pot experiments, results demonstrated a strong antagonistic potential of L. antibioticus HS124 against M. incognita where the disease was significantly reduced in the pots treated with BC as compared to TW or BCM. Furthermore, the shoot fresh weight was also increased significantly, which may be attributed to the disease control ability of the strain. Hence, L. antibioticus HS124 may be further developed as a potential biocontrol of root knot nematode in the field.


2012 ◽  
Vol 48 (No. 4) ◽  
pp. 170-178 ◽  
Author(s):  
M.S. Khalil ◽  
M.E.I. Badawy

The nematicidal activity of four molecular weights (2.27 &times; 10<sup>5</sup>, 3.60 &times; 10<sup>5</sup>, 5.97 &times; 10<sup>5</sup>, and 9.47 &times; 10<sup>5</sup> g/mol) of a biopolymer chitosan was assayed against the root-knot nematode, Meloidogyne incognita, in vitro and in pot experiments. In laboratory assays, the nematode mortality was significantly influenced by exposure times and chitosan molecular weight. Low molecular weight chitosan (2.27 &times; 10<sup>5</sup> g/mol) was the most effective in killing the nematode with EC<sub>50</sub> of 283.47 and 124.90 mg/l after 24 and 48 h of treatment, respectively. In a greenhouse bioassay, all the compounds mixed in soil at one- and five-fold concentrations of the LC<sub>50</sub> value significantly reduced population, egg mass, and root galling of tomato seedlings compared with the untreated control. In general, the nematicidal activity of these compounds was increased dramatically with a decrease in the molecular weight. The results suggest that the chitosan at low molecular weight may serve as a natural nematicide


2010 ◽  
Vol 100 (2) ◽  
pp. 199-203 ◽  
Author(s):  
Sergio Echeverrigaray ◽  
Jucimar Zacaria ◽  
Ricardo Beltrão

Nematicidal activity of 22 monoterpenoids were evaluated in vitro and in pot experiments. Twenty of the twenty-two monoterpenoids significantly reduced hatching, and 11 reduced J2 mobility of the root-knot nematode Meloidogyne incognita at a concentration of 250 mg/liter. In general, compounds with hydroxyl and carbonyl groups exhibited higher nematicidal activity than other terpenoids. Borneol, carveol, citral, geraniol, and α-terpineol showed the highest nematicidal activity among the in vitro tested monoterpenoids. These compounds exhibited a dose dependent effect, and drastically reduced eggs hatching and J2 viability at low concentrations. These monoterpenoids, at 100 and 250 mg/kg concentration, diminished root galling of tomato plants in pot experiments. The results suggest that the selected monoterpenoids, and essential oils with high concentration of these compounds, are potential nematicides against Meloidogyne.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 849
Author(s):  
Sabina Lachowicz-Wiśniewska ◽  
Ireneusz Kapusta ◽  
Carla M. Stinco ◽  
Antonio J. Meléndez-Martínez ◽  
Anna Bieniek ◽  
...  

The purpose of this study was to determine the distribution of polyphenolic and isoprenoid compounds and organic acids in the fruit skin + pulp, seeds, and leaves of six new biotypes of Elaeagnus multiflora Thunb., as well as their in vitro biological potency. The polyphenols and isoprenoids were determined with UPLC-PDA-MS/MS (ultra-performance liquid chromatography coupled to photodiode array detection and electrospray ionization tandem mass spectrometry) and RRLC-MS/MS (rapid resolution liquid chromatography/tandem mass spectrometry) methods, the organic acid with HPLC-RID (high-performance liquid chromatography coupled to a Refractive Index Detector), and the antioxidant capacity using ABTS and FRAP assays. Enzymatic activity was established as the ability to inhibit α-amylase, α-glucosidase, and pancreatic lipase. Owing to such an effective technique, 88 compounds were recorded, with 17 polyphenolic compounds and 3 isoprenoids identified for the first time in the seeds and leaves of cherry silverberry. In total, 55 compounds were identified in the leaves, 36 in the seeds, and 31 in the fruit skin + pulp. The predominant polyphenol was polymeric procyanidin (66–95% of total polyphenolics), whereas the predominant isoprenoids were chlorophyll b and (all-E)-lycopene. The results of our work noted that there are significant differences in the profiles of several secondary metabolites between the analyzed parts of the plant, and depending on the need, the compounds can be used to develop different innovative food or cosmetic products.


Nematology ◽  
2021 ◽  
pp. 1-9
Author(s):  
Djaafar Babaali ◽  
Johannes Roeb ◽  
Sabri Zaidat ◽  
Bouchra Reguige ◽  
Miloud Hammache ◽  
...  

Summary Alkaloids and alkaloid-producing plants have the potential to reduce crop damage by plant-parasitic nematodes. In a series of in vitro experiments, the nematicidal activity of the tropane alkaloids, hyoscyamine and scopolamine, and a mixture of both on the root-knot nematode, Meloidogyne incognita, was tested. Solutions of 16 mg of compound per ml of solvent were used in concentrations of 80-1280 μg ml−1 of water. Inactivity of second-stage juveniles of M. incognita increased with increasing concentration and exposure time. Lethal concentrations (LC50) after 120 min of exposure ranged from 182.4 μg ml−1 for scopolamine to 318.4 μg ml−1 for hyoscyamine and 332.8 μg ml−1 for the combination of both alkaloids. Similarly, the same concentrations of scopolamine inhibited hatching of M. incognita to a greater extent than hyoscyamine. In a glasshouse experiment, M. incognita was not able to penetrate the roots, induce galls and reproduce on Datura stramonium, D. innoxia and D. tatula. Results indicate that the tropane alkaloids hyoscyamine and scopolamine contained in Datura plants express a strong nematicidal activity against M. incognita and could possibly be used for an alternative and sustainable nematode management.


Nematology ◽  
2012 ◽  
Vol 14 (8) ◽  
pp. 913-924 ◽  
Author(s):  
Dang-Minh-Chanh Nguyen ◽  
Dong-Jun Seo ◽  
Kil-Yong Kim ◽  
Tae-Hwan Kim ◽  
Woo-Jin Jung

The potential use of Cinnamomum aromaticum and its active compound to control Meloidogyne incognita was investigated in vitro and in pot experiments. One compound, cinnamyl acetate, was isolated by thin layer chromatography and silica gel column chromatography, and identified by 1H-NMR, 13C-NMR and mass spectrometry. Juvenile movement and hatch inhibition by cinnamyl acetate was dependent on both the concentration and incubation time of the cinnamyl acetate. Treatment with 25, 50, 75, 100 and 125 μg ml−1 of cinnamyl acetate resulted in 33.7, 65.1, 81.1, 100 and 100% inhibition of movement of second-stage juveniles, respectively, at 50 min after incubation. The juvenile movement inhibition was <20% at the tested concentrations at 10 min after incubation. Cinnamyl acetate treatment resulted in 20.8, 39.4, 81.3 and 90.7% hatch inhibition at 25, 50, 100 and 200 μg ml−1, respectively, at 3 days after incubation and 21.6, 39.3, 73.2 and 88.7% hatch inhibition at 25, 50, 100 and 200 μg ml−1, respectively at 6 days after incubation. In pot tests, C. aromaticum crude extracts effectively inhibited infection of M. incognita on cucumber plants. Cinnamomum aromaticum crude extracts applied at 0.5 and 1.0 mg (g soil)−1 significantly reduced the numbers of galls caused by M. incognita. The activities of pathogenesis-related proteins as β-1,3-glucanase and peroxidase on leaves of plants treated with C. aromaticum crude extracts were significantly higher than those on leaves of control plants.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 992
Author(s):  
Anna Mas-Capdevila ◽  
Lisard Iglesias-Carres ◽  
Anna Arola-Arnal ◽  
Gerard Aragonès ◽  
Begoña Muguerza ◽  
...  

The peptide AVFQHNCQE demonstrated to produce nitric oxide-mediated antihypertensive effect. This study investigates the bioavailability and the opioid-like activity of this peptide after its oral administration. For this purpose, in silico and in vitro approaches were used to study the peptide susceptibility to GI digestion. In addition, AVFQHNCQE absorption was studied both in vitro by using Caco-2 cell monolayers and in vivo evaluating peptide presence in plasma from Wistar rats by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and by ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Both in vivo and in vitro experiments demonstrated that peptide AVFQHNCQE was not absorbed. Thus, the potential involvement of opioid receptors in the BP-lowering effect of AVFQHNCQE was studied in the presence of opioid receptors-antagonist Naloxone. No changes in blood pressure were recorded in rats administered Naloxone, demonstrating that AVFQHNCQE antihypertensive effect is mediated through its interaction with opioid receptors. AVFQHNCQE opioid-like activity would clarify the antihypertensive properties of AVFQHNCQE despite its lack of absorption.


2009 ◽  
Vol 11 (2) ◽  
pp. 147-153 ◽  
Author(s):  
C.P. Victório ◽  
R.M. Kuster ◽  
C.L.S. Lage

The species Alpinia purpurata is scarcely cited as to ethnopharmacology and phytochemistry. This study aimed to analyze bioactive compounds through high-performance liquid chromatography (HPLC). Hydroalcoholic crude extract was obtained from A. purpurata dried leaves. Folin-Ciocalteau method was used to quantify total phenols, using gallic acid as standard. The obtained result was 15.6 mg GAE g-1. The crude extract was partitioned with the solvents ethyl acetate and butanol, followed by thin-layer chromatography (TLC) and HPLC. The flavonoids kaempferol-3-O-glucuronide and rutin were detected at a higher concentration in ethyl acetate and butanolic extracts. The butanolic extract contains the highest flavonoid percentage (94.3%). A. purpurata presents important flavonoids of therapeutic use, already verified for A. zerumbet. This is the first study verifying the presence of flavonoids in A. purpurata extracts.


Sign in / Sign up

Export Citation Format

Share Document