Effects of Drought and Salt Stress on Activities of Antioxidant Protective Enzymes and Expression of Stress Genes in Alfalfa (Medicago sativa L.) Seedlings

2021 ◽  
Vol 15 (4) ◽  
pp. 553-558
Author(s):  
Zhifeng Chen ◽  
Haifeng Guo ◽  
Changling Sui ◽  
Zhixi Gao ◽  
Tianhong Wang ◽  
...  

Drought and salt are main environmental factors that affect the growth, development, productivity and distribution of plants of plants. Alfalfa has a strong ability of early and salt resistance. In this work, the varieties Xinjiang Daye was used as material, the effects of drought (simulated with PEG, polyethylene glycol-6000) and salt stress (with NaCl solution) on the antioxidant capacity of alfalfa seedlings and stress resistance genes was studied, to select alfalfa varieties with strong resistance and study its functional principle of resistance related genes. The results showed that with the increase of drought stress, the contents of H2O2, O2−, MDA increased by 323, 247 and 235 (15% PEG treatment). The activities of SOD, CAT and APX increased by 18.01, 15.56 and 587% (15% PEG treatment), respectively. The expression of drought resistance genes increased significantly. With the increase in NaCl stress, the activities of SOD, cat, pod and APX increased by 132.14, 315.60, 102.78 and 27.61%, respectively. The expression of two genes related to salt stress increased significantly. In conclusion, alfalfa leaves have good survival ability under high stress, and the activities of antioxidant enzymes and the expression of related genes have adaptive changes under drought and salt stress.

2021 ◽  
Author(s):  
Tongtong Zhang ◽  
Dengyu Zheng ◽  
Chun Zhang ◽  
Zhongyi Wu ◽  
Rong Yu ◽  
...  

Abstract Drought and salinity are serious environmental factors limiting the growth and productivity of plants worldwide. Therefore, it is necessary to develop ways to improve drought and salinity stress tolerance in plants. In this study, a drought-responsive nuclear factor Y subunit A gene, ZmNF-YA12, was cloned from maize. qPCR revealed ZmNF-YA12 transcript in all vegetative and reproductive tissues, with higher levels in young roots. Expression analyses of maize revealed that ZmNF-YA12 was induced by abscisic acid (ABA), jasmonic acid (JA), and abiotic stresses, including dehydration, high salinity, cold, and polyethylene glycol (PEG) treatment. The heterologous expression of ZmNF-YA12 in Arabidopsis plants resulted in increased root length and better plant growth than in wild-type (WT) plants under conditions of mannitol, salt, and JA stress on 1/2 MS medium. Transgenic Arabidopsis showed improved tolerance to drought and salt stresses in soil, and higher proline content and lower malondialdehyde (MDA) content than WT controls. The transgenic plants also maintained higher peroxidase (POD) activities than WT plants under conditions of NaCl stress. A yeast two-hybrid experiment demonstrated that ZmNF-YA12 interacted with ZmNF-YC1 and ZmNF-YC15. Moreover, the transcript levels of stress-responsive genes (RD29A, RD29B, RAB18, and RD22) were markedly increased in transgenic lines under conditions of drought and salt stress. These observations suggested that the ZmNF-YA12 gene confers drought and salt stress tolerance, and has potential applications in molecular breeding with maintenance of production under conditions of stress.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Margaret Linyerera SHIRAKU ◽  
Richard Odongo MAGWANGA ◽  
Xiaoyan CAI ◽  
Joy Nyangasi KIRUNGU ◽  
Yanchao XU ◽  
...  

Abstract Background Cotton is a valuable economic crop and the main significant source of natural fiber for textile industries globally. The effects of drought and salt stress pose a challenge to strong fiber and large-scale production due to the ever-changing climatic conditions. However, plants have evolved a number of survival strategies, among them is the induction of various stress-responsive genes such as the ribosomal protein large (RPL) gene. The RPL gene families encode critical proteins, which alleviate the effects of drought and salt stress in plants. In this study, comprehensive and functional analysis of the cotton RPL genes was carried out under drought and salt stresses. Results Based on the genome-wide evaluation, 26, 8, and 5 proteins containing the RPL14B domain were identified in Gossypium hirsutum, G. raimondii, and G. arboreum, respectively. Furthermore, through bioinformatics analysis, key cis-regulatory elements related to RPL14B genes were discovered. The Myb binding sites (MBS), abscisic acid-responsive element (ABRE), CAAT-box, TATA box, TGACG-motif, and CGTCA-motif responsive to methyl jasmonate, as well as the TCA-motif responsive to salicylic acid, were identified. Expression analysis revealed a key gene, Gh_D01G0234 (RPL14B), with significantly higher induction levels was further evaluated through a reverse genetic approach. The knockdown of Gh_D01G0234 (RPL14B) significantly affected the performance of cotton seedlings under drought/salt stress conditions, as evidenced by a substantial reduction in various morphological and physiological traits. Moreover, the level of the antioxidant enzyme was significantly reduced in VIGS-plants, while oxidant enzyme levels increased significantly, as demonstrated by the higher malondialdehyde concentration level. Conclusion The results revealed the potential role of the RPL14B gene in promoting the induction of antioxidant enzymes, which are key in oxidizing the various oxidants. The key pathways need to be investigated and even as we exploit these genes in the developing of more stress-resilient cotton germplasms.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhixin Chen ◽  
Xueqi Zhao ◽  
Zenghui Hu ◽  
Pingsheng Leng

AbstractSoil salinization is one of the main stress factors that affect both growth and development of plants. Hylotelephium erythrostictum exhibits strong resistance to salt, but the underlying genetic mechanisms remain unclear. In this study, hydroponically cultured seedlings of H. erythrostictum were exposed to 200 mM NaCl. RNA-Seq was used to determine root transcriptomes at 0, 5, and 10 days, and potential candidate genes with differential expression were analyzed. Transcriptome sequencing generated 89.413 Gb of raw data, which were assembled into 111,341 unigenes, 82,081 of which were annotated. Differentially expressed genes associated to Na+ and K+ transport, Ca2+ channel, calcium binding protein, and nitric oxide (NO) biosynthesis had high expression levels in response to salt stress. An increased fluorescence intensity of NO indicated that it played an important role in the regulation of the cytosolic K+/Na+ balance in response to salt stress. Exogenous NO donor and NO biosynthesis inhibitors significantly increased and decreased the Na+ efflux, respectively, thus causing the opposite effect for K+ efflux. Moreover, under salt stress, exogenous NO donors and NO biosynthesis inhibitors enhanced and reduced Ca2+ influx, respectively. Combined with Ca2+ reagent regulation of Na+ and K+ fluxes, this study identifies how NaCl-induced NO may function as a signaling messenger that modulates the K+/Na+ balance in the cytoplasm via the Ca2+ signaling pathway. This enhances the salt resistance in H. erythrostictum roots.


Author(s):  
Yu Li ◽  
Hao Chen ◽  
Shengting Li ◽  
Cuiling Yang ◽  
Qunying Ding ◽  
...  

2021 ◽  
Vol 9 (6) ◽  
pp. 1209
Author(s):  
Nuria Montes-Osuna ◽  
Carmen Gómez-Lama Cabanás ◽  
Antonio Valverde-Corredor ◽  
Garikoitz Legarda ◽  
Pilar Prieto ◽  
...  

Stress caused by drought and salinity may compromise growth and productivity of olive (Olea europaea L.) tree crops. Several studies have reported the use of beneficial rhizobacteria to alleviate symptoms produced by these stresses, which is attributed in some cases to the activity of 1-aminocyclopropane-1-carboxylic acid deaminase (ACD). A collection of beneficial olive rhizobacteria was in vitro screened for ACD activity. Pseudomonas sp. PICF6 displayed this phenotype and sequencing of its genome confirmed the presence of an acdS gene. In contrast, the well-known root endophyte and biocontrol agent Pseudomonas simiae PICF7 was defective in ACD activity, even though the presence of an ACD-coding gene was earlier predicted in its genome. In this study, an unidentified deaminase was confirmed instead. Greenhouse experiments with olive ‘Picual’ plants inoculated either with PICF6 or PICF7, or co-inoculated with both strains, and subjected to drought or salt stress were carried out. Several physiological and biochemical parameters increased in stressed plants (i.e., stomatal conductance and flavonoids content), regardless of whether or not they were previously bacterized. Results showed that neither PICF6 (ACD positive) nor PICF7 (ACD negative) lessened the negative effects caused by the abiotic stresses tested, at least under our experimental conditions.


2020 ◽  
Vol 21 (6) ◽  
pp. 2177 ◽  
Author(s):  
Bo Li ◽  
Jia-Cheng Zheng ◽  
Ting-Ting Wang ◽  
Dong-Hong Min ◽  
Wen-Liang Wei ◽  
...  

Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 835
Author(s):  
Jose Alvarez ◽  
Elvira Martinez ◽  
Belén Diezma

Hyperspectral imaging is an appropriate method to thoroughly investigate the microscopic structure of internally heterogeneous agro-food products. By using hyperspectral technology, identifying stress symptoms associated with salinity, before a human observer, is possible, and has obvious benefits. The objective of this paper was to prove the suitability of this technique for the analysis of Triticale seeds subjected to both magneto-priming and drought and salt stress conditions, in terms of image differences obtained among treatments. It is known that, on the one hand, drought and salt stress treatments have negative effects on seeds of almost all species, and on the other hand, magneto-priming enhances seed germination parameters. Thus, this study aimed to relate hyperspectral imaging values—neither positive nor negative in themselves—to the effects mentioned above. Two main conclusions were reached: Firstly, the hyperspectral application is a feasible method for exploring the Triticale structure and for making distinctions under different drought and salt stress treatments, in line with the data variability obtained. Secondly, the lower spectral reflectance in some treatments—in the 400–1000 nm segment—is the result of a great number of chemical compounds in the seed that could be related to magneto-priming.


Sign in / Sign up

Export Citation Format

Share Document