Protective Effect of Octreotide Against Liver Ischemic Reperfusion Injury in Rats

2020 ◽  
Vol 10 (8) ◽  
pp. 1115-1121
Author(s):  
Shuangfa Zou ◽  
Huiping Sun ◽  
Yanhua Peng ◽  
Shuo Yang ◽  
Jinfeng Yang

Liver ischemia-reperfusion injury (LIRI) is an inevitable complication during liver resection and liver transplantation. This study explored the effect of octreotide pretreatment on LIRI in rat model. Thirty male SD rats were included. They were divided into three groups: control group (sham operation plus saline treatment); ischemia/reperfusion group (IR group, ischemia/reperfusion operation plus saline treatment) and octreotide treatment group (IR + Oct group, ischemia/reperfusion operation plus octreotide treatment). The serum liver enzymes (ALT, AST) were tested to assess the liver damage in the rats. Light and electron microscopy was used to identify morphological alterations in each group. The expressions of HMGB1, RIP1 and RIP3 were measured by Immunohistochemistry and Western Blot. The levels of AST, ALT in IR group increased significantly (P < 0 05), and were significantly reduced by Octreotide pretreatment (P < 0 05). Morphology of control group remained grossly normal by transmission electron microscopy. While mitochondrial degeneration, cristae disruption, swelling, rupture was observed in IR group. The microscopic morphology of liver cells was basically normal and occasionally a small number of mitochondria were a little swelled in pretreatment with octreotide group. The expressions of HMGB1, RIP1 and RIP3 in pretreatment with octreotide were significantly down-regulated compared with those in pretreatment without octreotide (P < 0 001). The present study suggested that octreotide pretreatment play a protective role in LIRI, due to the decreased necrotizing apoptosis of hepatocytes. The mechanisms underlying these effects may be associated with the inhibition of HMGB1/RIP1/RIP3 necrotizing apoptosis signals.

2020 ◽  
Vol 23 (3) ◽  
pp. 214-224 ◽  
Author(s):  
Esra Cakir ◽  
Ufuk Cakir ◽  
Cuneyt Tayman ◽  
Tugba Taskin Turkmenoglu ◽  
Ataman Gonel ◽  
...  

Background: Activated inflammation and oxidant stress during cerebral ischemia reperfusion injury (IRI) lead to brain damage. Astaxanthin (ASX) is a type of carotenoid with a strong antioxidant effect. Objective: The aim of this study was to investigate the role of ASX on brain IRI. Methods: A total of 42 adult male Sprague-Dawley rats were divided into 3 groups as control (n=14) group, IRI (n=14) group and IRI + ASX (n=14) group. Cerebral ischemia was instituted by occluding middle cerebral artery for 120 minutes and subsequently, reperfusion was performed for 48 hours. Oxidant parameter levels and protein degradation products were evaluated. Hippocampal and cortex cell apoptosis, neuronal cell count, neurological deficit score were evaluated. Results: In the IRI group, oxidant parameter levels and protein degradation products in the tissue were increased compared to control group. However, these values were significantly decreased in the IRI + ASX group (p<0.05). There was a significant decrease in hippocampal and cortex cell apoptosis and a significant increase in the number of neuronal cells in the IRI + ASX group compared to the IRI group alone (p<0.05). The neurological deficit score which was significantly lower in the IRI group compared to the control group was found to be significantly improved in the IRI + ASX group (p<0.05). Conclusion: Astaxanthin protects the brain from oxidative damage and reduces neuronal deficits due to IRI injury.


2017 ◽  
Vol 11 (1-2) ◽  
pp. 19 ◽  
Author(s):  
Gokhun Ozmerdiven ◽  
Burhan Coskun ◽  
Onur Kaygisiz ◽  
Berna Aytac Vuruskan ◽  
Burak Asiltas ◽  
...  

Introduction: Nitric oxide (NO) plays an important role in the ischemia and reperfusion process. In this study, we aimed to examine the effect of L-arginine, tadalafil, and their combination for preventionof the ischemia reperfusion injury after testis torsion in rats.Methods: A total of 40 adult, male Sprague-Dawley rats were allocated into five groups. Three hours of left testicular torsion was performed in each group, excluding the control group. While the ischemia reperfusion (I/R) group had no treatment, I/R + Arg group received L-arginine, I/R + Td group received tadalafil and I/R + Arg + Td group received tadalafil and L-arginine 30 minutes before the detorsion. Then the left testis was untwisted for four hours of reperfusion. After bilateral orchiectomy, lipid peroxidation (LPx) and glutathione (GSH) activities were examined in testicular tissue.Spermatogenesis was evaluated with Johnsen’s score.Results: LPx levels of the I/R group were found to be significantly higher than for groups that received drugs for both testes (p<0.001). GSH levels of the combination group were higher than I/R group inipsilateral testis (p<0.01) and it was significantly higher than other groups for contralateral testis (p<0.001 for I/R group, p<0.01 for I/R + Arg, p<0.05 for I/R + Td). Mean Johnsen’s score of the I/Rgroup was found to be significantly lower than treatment groups in ipsilateral testis (p<0.001 for I/R + Arg + Td group, p<0.01 for other treatment goups) and contralateral testis (p<0.001). The meanJohnsen score of the combination group was significantly higher than that of other treatment groups in ipsilateral testis (p<0.05) and it was significantly higher than in the I/R + Td group in the contralateral testis (p<0.05).Conclusions: L-arginine, tadalafil, and combination of these two molecules showed protective effect against ischemia/reperfusion injury for both testes after unilateral testis torsion.


2019 ◽  
Vol 5 (2) ◽  
pp. e19-e19
Author(s):  
Leila Mohmoodnia ◽  
Sarina Safari Ahmadvand ◽  
Sahar Koushki ◽  
Behrooz Farzan ◽  
Sajad Papi ◽  
...  

Introduction: Renal ischemia reperfusion injury is one of the main causes of acute renal failure, which is associated with high mortality. Tissue damage caused by ischemia-reperfusion occurs due to the release of oxygen free radicals. Type I angiotensin receptor antagonists such as valsartan can be useful in the treatment of chronic kidney disease and hypertension. Objectives: We aimed to evaluate the protective effect of valsartan against renal ischemia reperfusion via antioxidant property and nitric oxide (NO) signaling pathway. Materials and Methods: Fifty male Wistar rats (220±10 g) were randomly divided into five groups as follows: Group 1; healthy rats without ischemia-reperfusion (control group). Group 2; rats with ischemia reperfusion (IR) (IR control group). Group 3; rats with IR which received 30 mg/kg valsartan orally. Group 4; rats with IR which received 30 mg/kg valsartan together with 40 mg/kg L-NAME. Group 5; rats with IR which received 30 mg/kg valsartan together with 40 mg/kg L-arginine. To induce ischemia-reperfusion, rats were anesthetized with thiopental and underwent surgery. Then, we induced ischemia with blocking blood vessels for 45 minutes by clamping. Biochemical parameters including urea and creatinine were measured using commercial kits. Oxidative stress and inflammatory parameters were measured by ELISA method. Renal tissues were stained with hematoxylin and eosin. Finally, the Kolmogorov-Smirnov test was used to determine the normal distribution of data. Results: The findings of this study indicated that treatment with valsartan and valsartan plus L-arginine leads to significant decrease in the serum levels of creatinine, urea, and albumin/creatinine, malondialdehyde (MDA), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) in contrast to IR control group which has increased level of these parameters. On the other hand, treatment with valsartan and valsartan plus L-arginine lead to increase in the serum levels of glutathione peroxidase (GPX), in contrast to ischemia reperfusion control group. Conclusion: Our data revealed that valsartan as a type I angiotensin receptor antagonist could decrease oxidative stress and inflammation due to renal ischemia reperfusion injury. Hence, valsartan could propose as a therapeutic agent for kidney diseases such as renal ischemia-reperfusion injury regarded to these renoprotective effects.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Fadhil G. Al-Amran ◽  
Najah R. Hadi ◽  
Haider S. H. Al-Qassam

Background. Global myocardial ischemia reperfusion injury after heart transplantation is believed to impair graft function and aggravate both acute and chronic rejection episodes. Objectives. To assess the possible protective potential of MK-886 and 3,5-diiodothyropropionic acid DITPA against global myocardial ischemia reperfusion injury after heart transplantation. Materials and Methods. Adult albino rats were randomized into 6 groups as follows: group I sham group; group II, control group; groups III and IV, control vehicles (1,2); group V, MK-886 treated group. Donor rats received MK-886 30 min before transplantation, and the same dose was repeated for recipients upon reperfusion; in group VI, DITPA treated group, donors and recipients rats were pretreated with DITPA for 7 days before transplantation. Results. Both MK-886 and DITPA significantly counteract the increase in the levels of cardiac TNF-α, IL-1β, and ICAM-1 and plasma level of cTnI (). Morphologic analysis showed that both MK-886 and DITPA markedly improved () the severity of cardiac injury in the heterotopically transplanted rats. Conclusions. The results of our study reveal that both MK-886 and DITPA may ameliorate global myocardial ischemia reperfusion injury after heart transplantation via interfering with inflammatory pathway.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Jingyuan Li ◽  
Negar Motayagheni ◽  
Neusha Barakati ◽  
Mansoureh Eghbali

The prevalence of coronary artery disease in late pregnancy (LP) has increased recently due to significant changes in women’s lifestyle patterns (age, stress, smoking, diabetes and chronic hypertension). Myocardial infarction during LP and the peripartum is associated with significant maternal mortality and morbidity compared to non pregnant women for unclear reasons. We have recently demonstrated that cardiac vulnerability to I/R injury drastically increases in LP rodents, leading to myocardial infarct size ~4 fold greater than in non-pregnant controls. We also discovered that administration of intralipid (an emulsion of soy bean oil, egg yolk phospholipids and glycerol) at reperfusion resulted in ~60% reduction in infarct size of the heart in LP rat subjected to I/R injury. However, the molecular mechanisms underlying intralipid-induced cardioprotection in late pregnancy is not clear. Here we hypothesized that intralipid protects the heart in late pregnancy by regulating the levels of specific microRNAs. The left anterior descending coronary artery was occluded in LP rats (21-22 days of pregnancy) for 45 min followed by 3 hr of reperfusion. One single bolus of PBS (control group) or 20% intralipid (intralipid group) was applied through the femoral vein 5 min before the reperfusion. The hearts of control and intralipid groups were used for microRNA microarray analysis (Ocean Ridge Biosciences). MicroRNA-microarray analysis identified MiR122 as a novel micro-RNA which its expression was strikingly upregulated more than 10 fold in the heart of LP rats in intralipid group compared to control group. miR122 regulates apoptosis in cardiomyocytes subjected to hypoxia/reoxygenation since miR122-overexpression resulted in reduced apoptosis, whereas knockdown of miR122 enhanced apoptosis. Pyruvate kinase isoform M2 (PKM2), which is known to regulate cell apoptosis in the liver, is a direct target of miR122. Our data show that PKM2 and caspase 3 are two targets of miR122 since the expression of PKM2 and capase-3 in the heats subjected to I/R was significantly lower in intralipid group compared to control group in LP. In conclusion intralipid protects the heart in late pregnancy against ischemia/reperfusion injury via inducing miR122 by targeting PKM2.


2011 ◽  
Vol 26 (suppl 1) ◽  
pp. 8-13 ◽  
Author(s):  
Raimundo José Cunha Araújo Júnior ◽  
Raimundo Gerônimo da Silva Júnior ◽  
Marcelo Pinho Pessoa de Vasconcelos ◽  
Sérgio Botelho Guimarães ◽  
Paulo Roberto Leitão de Vasconcelos ◽  
...  

PURPOSE: To evaluate the effects of pre-conditioning with L-alanyl- glutamine (L-Ala-Gln) in rats subjected to total hepatic ischemia. METHODS: Thirty Wistar rats, average weight 300g, were randomly assigned to 3 groups (n=10): G-1 - Saline, G-2- L-Ala-Gln, G-3-control (Sham). G-1 and G-3 groups were treated with saline 2.0 ml or L-Ala-Gln (0.75mg/Kg) intraperitoneally (ip) respectively, 2 hours before laparotomy. Anesthetized rats were subjected to laparotomy and total hepatic ischemia (30 minutes) induced by by clamping of portal triad. Control group underwent peritoneal puncture, two hours before the sham operation (laparotomy only). At the end of ischemia (G1 and G2), the liver was reperfused for 60 minutes. Following reperfusion blood samples were collected for evaluation of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels. Liver (medium lobe) was removed for immunohistochemistry study with antibody for Caspase-3. RESULTS: It was found a significant decrease (p<0.05) of ALT levels (270.6 +40.8 vs 83.3 +5.5 - p <0.05), LDH (2079.0 +262.4 vs. 206.6 +16.2 - p <0.05) and Caspase-3 expression (6.72 +1.35 vs. 2.19 +1.14, p <0.05) in rats subjected to I / R, comparing the group treated with L-Ala -Gln with G-2. Also, the ALT level was significantly lower (P<0.05) in G-1 and G-2 groups than in G-3 (control group). CONCLUSION: L-Ala-Gln preconditioning in rats submitted to hepatic I/R significantly reduces ALT, LDH and Caspase-3 expression, suggesting hepatic protection.


Author(s):  
Alberto Calleri ◽  
Dorotea Roggio ◽  
Victor Navarro-Tableros ◽  
Nicola De Stefano ◽  
Chiara Pasquino ◽  
...  

AbstractHepatic ischemia-reperfusion injury (IRI) is observed in liver transplantation and hepato-biliary surgery and is associated with an inflammatory response. Human liver stem cell-derived extracellular vesicles (HLSC-EV) have been demonstrated to reduce liver damage in different experimental settings by accelerating regeneration and by modulating inflammation. The aim of the present study was to investigate whether HLSC-EV may protect liver from IRI in a mouse experimental model. Segmental IRI was obtained by selective clamping of intrahepatic pedicles for 90 min followed by 6 h of reperfusion. HLSC-EV were administered intravenously at the end of the ischemic period and histopathological and biochemical alterations were evaluated in comparison with controls injected with vehicle alone. Intra liver localization of labeled HLSC-EV was assessed by in in vivo Imaging System (IVIS) and the internalization into hepatocytes was confirmed by fluorescence analyses. As compared to the control group, administration of 3 × 109 particles (EV1 group) significantly reduced alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) release, necrosis extension and cytokines expression (TNF-α, CCL-2 and CXCL-10). However, the administration of an increased dose of HLSC-EV (7.5 × 109 particles, EV2 group) showed no significant improvement in respect to controls at enzyme and histology levels, despite a significantly lower cytokine expression. In conclusion, this study demonstrated that 3 × 109 HLSC-EV were able to modulate hepatic IRI by preserving tissue integrity and by reducing transaminases release and inflammatory cytokines expression. By contrast, a higher dose was ineffective suggesting a restricted window of biological activity.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zhongzhong Liu ◽  
Xingjian Zhang ◽  
Qi Xiao ◽  
Shaojun Ye ◽  
Chin-Hui Lai ◽  
...  

Objective. Severe hepatic ischemia reperfusion injury (IRI) can result in poor short- and long-term graft outcome after transplantation. The way to improve the viability of livers from donors after circulatory death (DCD) is currently limited. The aim of the present study was to explore the protective effect of simvastatin on DCD livers and investigate the underlying mechanism. Methods. 24 male rats randomly received simvastatin or its vehicle. 30 min later, rat livers were exposed to warm ischemia in situ for 30 min. Livers were removed and cold-stored in UW solution for 24 h, subsequently reperfused for 60 min with an isolated perfused rat liver system. Liver injury was evaluated during and after warm reperfusion. Results. Pretreatment of DCD donors with simvastatin significantly decreased IRI liver enzyme release, increased bile output and ATP, and ameliorated hepatic pathological changes. Simvastatin maintained the expression of KLF2 and its protective target genes (eNOS, TM, and HO-1), reduced oxidative stress, inhibited innate immune responses and inflammation, and increased the expression of Bcl-2/Bax to suppress hepatocyte apoptosis compared to DCD control group. Conclusion. Pretreatment of DCD donors with simvastatin improves DCD livers’ functional recovery probably through a KLF2-dependent mechanism. These data suggest that simvastatin may provide a potential benefit for clinical DCD liver transplantation.


2020 ◽  
Vol 20 (5) ◽  
pp. 396-406 ◽  
Author(s):  
Liangtong Li ◽  
Xiangzi Li ◽  
Zhe Zhang ◽  
Li Liu ◽  
Tongtong Liu ◽  
...  

Background: The effects of hydrogen-rich water on PI3K/AKT-mediated apoptosis were studied in rats subjected to myocardial ischemia-reperfusion injury (MIRI). Methdos: Sixty rats were divided randomly into a hydrogen-rich water group and a control group. The hearts were removed and fixed in a Langendorff device. Hearts from the control group were perfused with K-R solution, and hearts from the hydrogen-rich water group was perfused with K-R solution + hydrogen-rich water. The two treatment groups were then divided randomly into pre-ischemic period, ischemic period and reperfusion period groups(10 rats per group), which were subjected to reverse perfusion for 10 min, normal treatment for 20 min, and reperfusion for 20 min, respectively. The mRNA and protein expression levels of PI3K, AKT, p-AKT, FoxO1, Bim and Caspase-3 in each group were detected by RT-qPCR, immunohistochemistry (IHC) and Western blotting. Caspase-3 activity was detected by spectrophotometry. Results: Among the hydrogen-rich water group, the PI3K/AKT signaling pathway was significantly activated, and FoxO1, Bim, and Caspase-3 mRNA and protein levels were significantly decreased in ischemia-reperfusion subgroup compared with the preischemic and ischemic subgroups. In the ischemia-reperfusion hydrogen-rich water group, PI3K, AKT and p-AKT mRNA and protein expression levels were increased while the FoxO1, Bim and Caspase-3 expression levels were significantly decreased compared with those in the corresponding control group (p<0.05). Conclusion: Hydrogen-rich water can activate the PI3K/AKT signaling pathway, alleviate ischemia-reperfusion injury in isolated rat hearts, and inhibit cardiomyocyte apoptosis.


Sign in / Sign up

Export Citation Format

Share Document