Performance Analysis of Leakage Current Reduction in Standby Mode of Zigbee SoC Using Active Mode Logic

2018 ◽  
Vol 15 (2) ◽  
pp. 525-529 ◽  
Author(s):  
K. Parthiban ◽  
S. Sasikumar

Zigbee SoC plays an important role in transferring and receiving the data in wireless sensor networks for its data security and high speed grade. The active mode of Zigbee SoC consumes power from power supply directly and standby mode of Zigbee SoC consumes no power from the power supply unit. There may be a leakage current in standby mode of the circuit which further linearly degrades the performance of the Zigbee SoC. This paper proposes a low power and high efficient active mode logic of the power gating methodology in Zigbee SoC to reduce the leakage current. The circuit in proposed Zigbee SoC has less number of transistors than the conventional methodology and hence the proposed system has low delay as 2.29 * 10–8 ms.

2013 ◽  
Vol 12 (02) ◽  
pp. 1350011
Author(s):  
JAYRAM SHRIVAS ◽  
SHYAM AKASHE ◽  
NITESH TIWARI

Optimization of power is a very important issue in low-voltage and low-power application. In this paper, we have proposed power gating technique to reduce leakage current and leakage power of one-bit full adder. In this power gating technique, we use two sleep transistors i.e., PMOS and NMOS. PMOS sleep transistor is inserted between power supply and pull up network. And NMOS sleep transistor is inserted between pull down network and ground terminal. These sleep transistors (PMOS and NMOS) are turned on when the circuit is working in active mode. And sleep transistors (PMOS and NMOS) are turned off when circuit is working in standby mode. We have simulated one-bit full adder and compared with the power gating technique using cadence virtuoso tool in 45 nm technology at 0.7 V at 27°C. By applying this technique, we have reduced leakage current from 2.935 pA to 1.905 pA and leakage power from 25.04μw to 9.233μw. By using this technique, we have reduced leakage power up to 63.12%.


2008 ◽  
Vol 17 (02) ◽  
pp. 183-190 ◽  
Author(s):  
S. RAMAKRISHNAN ◽  
K. T. LAU

In this paper, a newly improved dynamic current mode logic (I-DyCML) is proposed to achieve low power dissipation. The principle used in I-DyCML is the reduction of the leakage current by turning the part of the circuit to "standby mode", when not in use, while achieving lower dynamic power during the active mode. HSpice simulations show that I-DyCML saves up to 15–30% of the total power dissipation when compared to Dynamic Current mode logic.


2018 ◽  
Vol 28 (8) ◽  
pp. 440-444
Author(s):  
Kwang-Jin Lee ◽  
◽  
Doyeon Kim ◽  
Duck-Kyun Choi ◽  
Woo-Byoung Kim

2018 ◽  
Vol 77 (6) ◽  
pp. 337-346 ◽  
Author(s):  
A. B. Kosarev ◽  
A. V. Barch ◽  
E. N. Rozenberg

Abstract. High-speed railways are fast-growing and promising type of traffic. In Russia development of high-speed railway service is associated with the solution of a number of problems, including infrastructure. Authors propose to use earth connection of the railway catenary with the help of an artificial earthing switch on currently designed high-speed line Moscow—Kazan for 2×25 kV power supply system. Taking into account requirements for electrical safety conditions for maintenance of the track and earthed catenary supports, paper justifies method for calculating allowable voltages of rail—earth points and supports of catenary. Methods takes into account structural features of ballastless track superstructure used for high-speed lines. It is estimated that the voltages admissible under the electrical safety conditions are random in nature and distributed logarithmically normal. When calculating probability of safe operation, one should take into account random nature of both permissible stresses and those actually occurring on the track. It is estimated that the probability of safe operation in traction networks of sections with ballastless track superstructure does not exceed a similar value in electrified sections with the conventional structure of a ballast prism. Feasibility of using a 2×25 kV earth system using an artificial earth connection is confirmed, recommendations on its use are given. Authors substantiate allowable values of the rail—earth voltage and catenary supports, which practically exclude the occurrence of hazardous situations for personnel maintaining the track in sections with ballastless track superstructure.


2021 ◽  
Vol 57 (15) ◽  
pp. 1907-1910
Author(s):  
Dapeng Liu ◽  
Yiwei Zhao ◽  
Qianqian Shi ◽  
Shilei Dai ◽  
Li Tian ◽  
...  

A solid-state hybrid electrolyte dielectric film was designed for leakage current reduction, synaptic simulation and neuromorphic computing systems.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1823
Author(s):  
Mohammad Haidar ◽  
Hussein Chible ◽  
Corrado Boragno ◽  
Daniele D. Caviglia

Sensor nodes have been assigned a lot of tasks in a connected environment that is growing rapidly. The power supply remains a challenge that is not answered convincingly. Energy harvesting is an emerging solution that is being studied to integrate in low power applications such as internet of things (IoT) and wireless sensor networks (WSN). In this work an interface circuit for a novel fluttering wind energy harvester is presented. The system consists of a switching converter controlled by a low power microcontroller. Optimization techniques on the hardware and software level have been implemented, and a prototype is developed for testing. Experiments have been done with generated input signals resulting in up to 67% efficiency for a constant voltage input. Other experiments were conducted in a wind tunnel that showed a transient output that is compatible with the target applications.


Author(s):  
Xiaonan Zhu ◽  
Hongliang Wang ◽  
Wenyuan Zhang ◽  
Hanzhe Wang ◽  
Xiaojun Deng ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhongmei Chi ◽  
Irfan Azhar ◽  
Habib Khan ◽  
Li Yang ◽  
Yunxiang Feng

AbstractDissolution testing plays many important roles throughout the pharmaceutical industry, from the research and development of drug products to the control and evaluation of drug quality. However, it is a challenging task to perform both high-efficient separation and high-temporal detection to achieve accurate dissolution profile of each active ingredient dissolved from a drug tablet. In our study, we report a novel non-manual-operation method for performing the automatic dissolution testing of drug tablets, by combining a program-controlled sequential analysis and high-speed capillary electrophoresis for efficient separation of active ingredients. The feasibility of the method for dissolution testing of real drug tablets as well as the performance of the proposed system has been demonstrated. The accuracy of drug dissolution testing is ensured by the excellent repeatability of the sequential analysis, as well as the similarity of the evaluation of dissolution testing. Our study show that the proposed method is capable to achieve simultaneous dissolution testing of multiple ingredients, and the matrix interferences can be avoided. Therefore it is of potential valuable applications in various fields of pharmaceutical research and drug regulation.


Sign in / Sign up

Export Citation Format

Share Document