Low Power Adiabetic Logic System for Biomedical Applications

2021 ◽  
Vol 11 (12) ◽  
pp. 3123-3132
Author(s):  
M. Mailsamy ◽  
V. Rukkumani ◽  
K. Srinivasan

There have been significant advances in sensors and device structures in the medical industry, particularly in implanted medical devices. Increasingly complex electronic circuitry may now be implanted in the human body thanks to compact, high-energy batteries and hermetic packaging. These gadgets must adhere to strict power consumption guidelines due to the battery recharging schedule. Designing energy-efficient circuits and systems becomes increasingly important as a result of this fact. Adiabatic circuits provide a hopeful alternative for traditional circuitry in case of low energy design. Because of power-clock phases synchronization complexity, designing and functionally verifying presenting 4-phase adiabatic circuitry takes longer. Accordingly, multiple clock generators are used typically and can reveal enhanced consumption of energy in the network of clock distribution. Furthermore, they are not suitable for designing in high-speed because of their clock skew management and high complexity issues. In this paper, TMEL (True multi-phase energy recovering logic), the first energyrecovering/adiabatic logic family is presented for biomedical applications, which functions using the scheme multiple-phase sinusoidal clocking. Moreover, a system of SCAL, a source-coupled variation with TMEL having enhanced energy efficiency and supply voltage scalability, is introduced. A novel true multi-phase Approach and Source-coupled adiabatic logic for energy effective communication system is proposed. The adiabatic logic is employed for both write and read side operation. The CMOS inverter is integrated with TMEL cascades, which in turn reduces leakage loss. In SCAL, the optimal performance at any operating circumstance is attained byan adjustable current source in each gate. SCAL, and TMEL, are capable of outperforming existing adiabatic logic families concerning operating speed and energy efficiency. The performance analysis was carried and simulated through 45 nm CMOS inverter in terms of leakage power, delay, and power consumption. In particular, for the clock rates that range from 10 MHz to 200 MHz, the proposed SCAL was more energy-efficient and less dissipative on comparing their pipelined or purely combinational CMOS counterparts. In biomedical equipment, the system may be included into the low-power design since it is energy efficient and very robust. Improvements in VLSI technology, such as increased dynamic range, low-voltage EEPROMs (electrically eraseable programmable ROMs), and specific sensor techniques, are also expected to contribute to advancements in implanted medical devices in the near future.

Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Eljona Zanaj ◽  
Giuseppe Caso ◽  
Luca De Nardis ◽  
Alireza Mohammadpour ◽  
Özgü Alay ◽  
...  

In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions.


VLSI Design ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
A. Kishore Kumar ◽  
D. Somasundareswari ◽  
V. Duraisamy ◽  
T. Shunbaga Pradeepa

Asynchronous adiabatic logic (AAL) is a novel lowpower design technique which combines the energy saving benefits of asynchronous systems with adiabatic benefits. In this paper, energy efficient full adder using double pass transistor with asynchronous adiabatic logic (DPTAAL) is used to design a low power multiplier. Asynchronous adiabatic circuits are very low power circuits to preserve energy for reuse, which reduces the amount of energy drawn directly from the power supply. In this work, an 8×8 multiplier using DPTAAL is designed and simulated, which exhibits low power and reliable logical operations. To improve the circuit performance at reduced voltage level, double pass transistor logic (DPL) is introduced. The power results of the proposed multiplier design are compared with the conventional CMOS implementation. Simulation results show significant improvement in power for clock rates ranging from 100 MHz to 300 MHz.


VLSI Design ◽  
2001 ◽  
Vol 12 (3) ◽  
pp. 349-363
Author(s):  
V. A. Bartlett ◽  
E. Grass

Strategies for the design of ultra low power multipliers and multiplier-accumulators are reported. These are optimized for asynchronous applications being able to take advantage of data-dependent computation times. Nevertheless, the low power consumption can be obtained in both synchronous and asynchronous environments. Central to the energy efficiency is a dynamic-logic technique termed Conditional Evaluation which is able to exploit redundancies within the carry-save array and deliver energy consumption which is also heavily data-dependent.Energy efficient adaptations for handling two's complement operands are introduced. Area overheads of the proposed designs are estimated and transistor level simulation results of signed and unsigned multipliers as well as a signed multiplier-accumulator are given.Normalized comparisons with other designs show our approach to use less energy than other published multipliers.


Author(s):  
Ayodeji A. Ajani ◽  
◽  
Vitalice K. Oduol ◽  
Zachaeus K. Adeyemo ◽  
Ebude C. Awasume

5G Ultra-Dense Networks (UDNs) will involve massive deployment of small cells which in turn form complex backhaul network. This backhaul network must be energy efficient for the 5G UDN network to be green. V-band and E-band mmWave technologies are among the wireless backhaul solutions tipped for 5G UDN. In this paper, we have compared the performance of the two backhaul solutions to determine which is more energy efficient for 5G UDN. We first formulated the problem to minimize power, then proposed an algorithm to solve the problem. This was then simulated using Network simulator 3.The first scenario made use of V-band mmWave while thesecond was E-band mmWave. The performance metricsused were power consumption and energy efficiency againstthe normalized hourly traffic profile. The performances ofthe two solutions were compared. The results revealed thatE-band mmWave outperformed V-band mmWave inbackhauling traffic in 5G UDN. It can be concluded that E-band green backhaul solution is recommended over V-bandmmWave for 5G UDN.


2020 ◽  
Vol 10 (4) ◽  
pp. 457-470 ◽  
Author(s):  
Dipanjan Sen ◽  
Savio J. Sengupta ◽  
Swarnil Roy ◽  
Manash Chanda ◽  
Subir K. Sarkar

Aims:: In this work, a Junction-Less Double Gate MOSFET (JLDG MOSFET) based CMOS inverter circuit is proposed for ultra-low power applications in the near and sub-threshold regime operations. Background:: D.C. performances like power, delay and voltage swing of the proposed Inverter have been modeled analytically and analyzed in depth. JLDG MOSFET has promising features to reduce the short-channel effects compared to the planner MOSFET because of better gate control mechanism. So, proposed Inverter would be efficacious to offer less power dissipation and higher speed. Objective:: Impact of supply voltage, temperature, High-k gate oxide, TOX, TSI on the power, delay and voltage swing of the Inverter circuits have been detailed here. Methods: Extensive simulations using SILVACO ATLAS have been done to validate the proposed logic based digital circuits. Besides, the optimum supply voltage has been modelled and verified through simulation for low voltage operations. In depth analysis of voltage swing is added to measure the noise immunity of the proposed logic based circuits in Sub & Near-threshold operations. For ultra-low power operation, JLDG MOSFET can be an alternative compared to conventional planar MOSFET. Result:: Hence, the analytical model of delay, power dissipation and voltage swing have been proposed of the proposed logic based circuits. Besides, the ultra-low power JLDG CMOS inverter can be an alternative in saving energy, reduction of power consumption for RFID circuit design where the frequency range is a dominant factor. Conclusion:: The power consumption can be lowered in case of UHF, HF etc. RF circuits using the Double Gate Junction-less MOSFET as a device for circuit design.


2020 ◽  
pp. 89-93
Author(s):  
Vasiliy Titovich Cheremisin ◽  
◽  
Mikhail Mikhaylovich Nikiforov ◽  
Alexander Sergeevich Vilgelm ◽  
Sergey Yuryevich Ushakov ◽  
...  

According to results of experimental studies within the framework of the Moscow Central Ring the authors revealed the best trips of drivers in terms of energy efficiency of train traction. The analysis of these trips allowed determining riding techniques that provide energy saving: smooth acceleration and braking at unconditional performance of the given train schedule. On the basis of the developed simulation model of the Moscow Central Ring it is established that the use of energy efficient techniques of riding with the on time train performance can reduce the power consumption on train traction by 13.3 %.


Sign in / Sign up

Export Citation Format

Share Document