Studies on the Inhibitory Effects of Nano-Hydroxyapatite-Loaded As2O3 on Hepatoma Cells

2020 ◽  
Vol 20 (12) ◽  
pp. 7451-7456
Author(s):  
Jun Xue ◽  
Yanke Hu ◽  
Yinxia Su ◽  
Tangmeng Guo ◽  
Yunqiao Li

A stable monodisperse hydroxyapatite (HAP) nanoparticle suspension was prepared by chemical method-assisted ultrasound irradiation. HAP nanoparticles were characterized by atomic force microscopy (AFM) and particle size potentiometry. The effects of HAP nanoparticles on BEL-7402 human hepatocarcinoma cells were studied by MTT colorimetric assay and morphological observation. The mechanism of HAP nanoparticles was studied by analyzing single cell fluorescence element microregion, the change of ultrastructure and cell cycle. The experimental results show that HAP nanoparticles have an obvious inhibitory effect on BEL-7402 human hepatocarcinoma cells in vitro. By entering the cancer cells and blocking the progress of cell cycle, HAP nanoparticles induce the accumulation of cells in G1 phase, which leads to cancer cell swelling and apoptosis.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Delizhaer Reheman ◽  
Jing Zhao ◽  
Shan Guan ◽  
Guan-Cheng Xu ◽  
Yi-Jie Li ◽  
...  

Abstract Pyrazolone complexes have strong anti-tumor and antibacterial properties, but the anti-tumor mechanism of pyrazolone-based copper complexes has not been fully understood. In this study, the possible mechanism and the inhibitory effect of a novel pyrazolone-based derivative compound [Cu(PMPP-SAL)(EtOH)] on human cervical cancer cells (HeLa cells) was investigated. [Cu(PMPP-SAL)(EtOH)] effectively inhibited proliferation of HeLa cells in vitro with an IC50 value of 2.082 after treatment for 72 h. Cell cycle analysis showed apoptosis was induced by blocking the cell cycle in the S phase. [Cu(PMPP-SAL)(EtOH)] promoted the loss of mitochondrial membrane potential, release of cytochrome c, PARP cleavage, and activation of caspase-3/9 in HeLa cells. Additionally, [Cu(PMPP-SAL)(EtOH)] inhibited the PI3K/AKT pathway and activated the P38/MAPK, and JNK/MAPK pathways. [Cu(PMPP-SAL)(EtOH)] also inhibited the phosphorylation of Iκ-Bα in the NF-κB pathway activated by TNF-α, thus restricting the proliferation of HeLa cells which were activated by TNF-α. In conclusion, [Cu(PMPP-SAL)(EtOH)] inhibited the growth of HeLa cells and induced apoptosis possibly via the caspase-dependent mitochondria-mediated pathway. These results suggest that [Cu(PMPP-SAL)(EtOH)] can be a potential candidate for the treatment of cervical cancer.


Planta Medica ◽  
2018 ◽  
Vol 84 (11) ◽  
pp. 786-794
Author(s):  
Weiyun Chai ◽  
Lu Chen ◽  
Xiao-Yuan Lian ◽  
Zhizhen Zhang

AbstractTripolinolate A as a new bioactive phenolic ester was previously isolated from a halophyte of Tripolium pannonicum. However, the in vitro and in vivo anti-glioma effects and mechanism of tripolinolate A have not been investigated. This study has demonstrated that (1) tripolinolate A inhibited the proliferation of different glioma cells with IC50 values of 7.97 to 14.02 µM and had a significant inhibitory effect on the glioma growth in U87MG xenograft nude mice, (2) tripolinolate A induced apoptosis in glioma cells by downregulating the expressions of antiapoptotic proteins and arrested glioma cell cycle at the G2/M phase by reducing the expression levels of cell cycle regulators, and (3) tripolinolate A also remarkably reduced the expression levels of several glioma metabolic enzymes and transcription factors. All data together suggested that tripolinolate A had significant in vitro and in vivo anti-glioma effects and the regulation of multiple tumor-related regulators and transcription factors might be responsible for the activities of tripolinolate A against glioma.


2013 ◽  
Vol 49 (4) ◽  
pp. 803-809
Author(s):  
Monica Lacerda Lopes Martins ◽  
Henrique Poltronieri Pacheco ◽  
Iara Giuberti Perini ◽  
Dominik Lenz ◽  
Tadeu Uggere de Andrade ◽  
...  

In 1820, French naturalist August Saint Hillaire, during a visit in Espírito Santo (ES), a state in southeastern Brazil, reported a popular use of Cyperaceae species as antidote to snake bites. The plant may even have a hypotensive effect, though it was never properly researched. The in vitro inhibitory of the angiotensin converting enzyme (ACE) activity of eigth ethanolic extracts of Cyperaceae was evaluated by colorimetric assay. Total phenolic and flavonoids were determined using colorimetric assay. The hypotensive effect of the active specie (Rhychonospora exaltata, ERE) and the in vivo ACE assay was measured in vivo using male Wistar Kyoto (ERE, 0.01-100mg/kg), with acetylcholine (ACh) as positive control (5 µg/kg, i.v.). The evaluation of ACE in vivo inhibitory effect was performed comparing the mean arterial pressure before and after ERE (10 mg/kg) in animals which received injection of angiotensin I (ANG I; 0,03, 03 and 300 µg/kg, i.v.). Captopril (30 mg/kg) was used as positive control. Bulbostylis capillaris (86.89 ± 15.20%) and ERE (74.89 ± 11.95%, ERE) were considered active in the in vitro ACE inhibition assay, at 100 µg/mL concentration. ACh lead to a hypotensive effect before and after ERE's curve (-40±5% and -41±3%). ERE showed a dose-dependent hypotensive effect and a in vivo ACE inhibitory effect. Cyperaceae species showed an inhibitory activity of ACE, in vitro, as well as high content of total phenolic and flavonoids. ERE exhibited an inhibitory effect on both in vitro and in vivo ACE. The selection of species used in popular medicine as antidotes, along with the in vitro assay of ACE inhibition, might be a biomonitoring method for the screening of new medicinal plants with hypotensive properties.


2019 ◽  
Vol 20 (9) ◽  
pp. 2190 ◽  
Author(s):  
Silvia Zappavigna ◽  
Daniela Vanacore ◽  
Stefania Lama ◽  
Nicoletta Potenza ◽  
Aniello Russo ◽  
...  

Silybin is a flavonolignan extracted from Silybum marianum (milk thistle) with hepatoprotective, antioxidant, and anti-inflammatory activity. Several studies have shown that silybin is highly effective to prevent and treat different types of cancer and that its antitumor mechanisms involve the arrest of the cell cycle and/or apoptosis. An MTT assay was performed to study cell viability, lipid peroxidation, extracellular NO production, and scavenger enzyme activity were studied by Thiobarbituric Acid-Reactive Species (TBARS) assay, NO assay, and MnSOD assay, respectively. Cell cycle and apoptosis analysis were performed by FACS. miRNA profiling were evaluated by real time PCR. In this study, we demonstrated that Silybin induced growth inhibition blocking the Hepg2 cells in G1 phase of cell cycle and activating the process of programmed cell death. Moreover, the antiproliferative effects of silybin were paralleled by a strong increase of the number of ceramides involved in the modulation of miRNA secretion. In particular, after treatment with silybin, miR223-3p and miR16-5p were upregulated, while miR-92-3p was downregulated (p < 0.05). In conclusion, our results suggest that silybin-Induced apoptosis occurs in parallel to the increase of ceramides synthesis and miRNAs secretion in HepG2 cells.


2015 ◽  
Vol 10 (4) ◽  
pp. 759 ◽  
Author(s):  
Bin Zhou ◽  
Qiang Fu ◽  
Sha-Sha Song ◽  
Hong-Li Zheng ◽  
Yu-Zhen Wei

<p class="Abstract">The aim of this study was to examine the anticancer effects of schizophyllan (a -D-glucan) against the growth of rat CNS-1 glioma cells and preliminarily assess its effect on inducing apoptosis and blocking cell cycle. In order to evaluate its inhibitory effect, firstly MTT assay was conducted followed by annexin V/propidium iodide double staining or propidium iodide single staining, apoptosis and cell cycle using flow cytometry. All the experiments were carried in a dose- and time-dependent manner. Experimental results showed that treatment of 40 and 60 mg/L schizophyllan significantly increa-sed the apoptotic rate and blocked the cell cycle. In addition, increase in the proportion of cells in G0/G1 phase and decrease in the proportion of S-phase cells were also observed. Overall experimental studies suggest that schizo-phyllan can significantly inhibit the growth of rat CNS-1 glioma cells, in vitro and induced apoptosis and blocked the cell cycle.</p><p> </p>


Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 763
Author(s):  
Ameliya Dickson ◽  
Elise Cooper ◽  
Lenu B. Fakae ◽  
Bo Wang ◽  
Ka Lung Andrew Chan ◽  
...  

We examined the inhibitory effect of matcha green tea (Camellia sinensis) and epigallocatechin gallate (EGCg; the most abundant catechin in tea) on the vegetative growth and encystation of Acanthamoeba castellanii T4 genotype. The sulforhodamine B (SRB) stain-based colorimetric assay and hemocytometer counting were used to determine the reduction in A. castellanii trophozoite proliferation and encystation, in response to treatment with C. sinensis or EGCg. Fourier transform infrared (FTIR) microscopy was used to analyze chemical changes in the trophozoites and cysts due to C. sinensis treatment. Hot brewed and cold brewed matcha inhibited the growth of trophozoites by >40% at a 100 % concentration. EGCg at concentrations of 50 to 500 µM significantly inhibited the trophozoite growth compared to control. Hot brewed matcha (100% concentration) also showed an 87% reduction in the rate of encystation compared to untreated control. Although 500 µM of EGCg increased the rate of encystation by 36.3%, 1000 µM reduced it by 27.7%. Both percentages were not significant compared to control. C. sinensis induced more cytotoxicity to Madin Darby canine kidney cells compared to EGCg. FTIR chemical fingerprinting analysis showed that treatment with brewed matcha significantly increased the levels of glycogen and carbohydrate in trophozoites and cysts.


Blood ◽  
1994 ◽  
Vol 83 (5) ◽  
pp. 1329-1336 ◽  
Author(s):  
MA Ghetie ◽  
LJ Picker ◽  
JA Richardson ◽  
K Tucker ◽  
JW Uhr ◽  
...  

Abstract In this report, we extend our previous findings that IgG or F(ab′)2 fragments of HD37 anti-CD19 antibody (Ab) in combination with the immunotoxin (IT), RFB4-anti-CD22-deglycosylated ricin A chain (dgA) (but neither reagent alone), prolonged the survival of SCID mice with disseminated human Daudi lymphoma (SCID/Daudi mice) to 1 year at which time they still remained tumor-free. We explored the mechanisms by which the HD37 Ab exerts antitumor activity in vivo by studying its activity in vitro. We found that it has antiproliferative activity (IC50 = 5.2 - 9.8 x 10(-7) mol/L) on three CD19+ Burkitt's lymphoma cell lines (Daudi, Raji, and Namalwa) but not on a weakly CD19-positive (CD19lo) pre-B cell tumor (Nalm-6). The inhibitory effect was manifested by cell cycle arrest, but not apoptosis. Results using three additional anti-CD19 Abs, suggest that the affinity of the antibody and possibly the epitope which it recognizes may effect its capacity to transmit a signal that induces cell cycle arrest. Hence, therapeutically useful Abs may exert anti-tumor activity by a variety of mechanisms, each of which should be evaluated before undertaking clinical trials in humans.


Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 305-307 ◽  
Author(s):  
T Asakura ◽  
Y Shibutani ◽  
MP Reilly ◽  
RH DeMeio

Abstract Potassium tellurite (K2TeO3) was found to be a potent antisickling agent that inhibited red cell sickling at concentrations less than 10 mumol/L. The inhibitory effect depended on the incubation time, with the effect increasing with longer incubation periods. Because tellurite causes swelling of red cells, and because the antisickling effect of tellurite correlated with the degree of red cell swelling, the antisickling effect of tellurite is assumed to be due to the decreased mean cell hemoglobin concentration. Swelling of red cells by tellurite was accelerated by the addition of reduced glutathione. Tellurite appears to be a new type of antisickling agent that interacts with the red cell membrane.


Blood ◽  
1996 ◽  
Vol 88 (8) ◽  
pp. 3147-3159 ◽  
Author(s):  
F Pomponi ◽  
R Cariati ◽  
P Zancai ◽  
P De Paoli ◽  
S Rizzo ◽  
...  

Natural and synthetic retinoids have proved to be effective in the treatment and prevention of various human cancers. In the present study, we investigated the effect of retinoids on Epstein-Barr virus (EBV)-infected lymphoblastoid cell lines (LCLs), since these cells closely resemble those that give rise to EBV-related lymphoproliferative disorders in the immunosuppressed host. All six compounds tested inhibited LCL proliferation with no significant direct cytotoxicity, but 9-cis-retinoic acid (RA), 13-cis-RA, and all-trans-RA (ATRA) were markedly more efficacious than Ro40–8757, Ro13–6298, and etretinate. The antiproliferative action of the three most effective compounds was confirmed in a large panel of LCLs, thus appearing as a generalized phenomenon in these cells. LCL growth was irreversibly inhibited even after 2 days of treatment at drug concentrations corresponding to therapeutically achievable plasma levels. Retinoid-treated cells showed a marked downregulation of CD71 and a decreased S-phase compartment with a parallel accumulation in Gzero/ G1 phases. These cell cycle perturbations were associated with the upregulation of p27 Kip1, a nuclear protein that controls entrance and progression through the cell cycle by inhibiting several cyclin/cyclin-dependent kinase complexes. Unlike what is observed in other systems, the antiproliferative effect exerted by retinoids on LCLs was not due to the acquisition of a terminally differentiated status. In fact, retinoid-induced modifications of cell morphology, phenotype (downregulation of CD19, HLA-DR, and s-Ig, and increased expression of CD38 and c-Ig), and IgM production were late events, highly heterogeneous, and often slightly relevant, being therefore only partially indicative of a drug-related differentiative process. Moreover, EBV-encoded EBV nuclear antigen-2 and latent membrane protein-1 proteins were inconstantly downregulated by retinoids, indicating that their growth-inhibitory effect is not mediated by a direct modulation of viral latent antigen expression. The strong antiproliferative activity exerted by retinoids in our experimental model indicates that these compounds may represent a useful tool in the medical management of EBV-related lymphoproliferative disorders of immunosuppressed patients.


1996 ◽  
Vol 16 (9) ◽  
pp. 4862-4868 ◽  
Author(s):  
K N Chow ◽  
D C Dean

The retinoblastoma protein (Rb) is a tumor suppressor that regulates progression from the G1 phase to the S phase of the cell cycle. Previously, we found that Rb is a transcriptional repressor that is selectively targeted to promoters through an interaction with the E2F family of cell cycle transcription factors--when Rb is tethered to a promoter through E2F, it not only blocks E2F activity, it also binds surrounding transcription factors, preventing their interaction with the basal transcription complex, thus resulting in a dominant inhibitory effect on transcription of cell cycle genes. Here we examine the repressor motif of Rb. The two domains in the Rb pocket, A and B, which are conserved across species and in the Rb-related proteins p107 and p130, are both required for repressor activity. The nonconserved spacer separating A and B is not required. Although neither A nor B alone had any repressor activity, surprisingly, repressor activity was observed when the domains were coexpressed on separate proteins. Transfection assays suggest that one domain can recruit the other to the promoter to form a repressor motif that can both interact with E2F and have a dominant inhibitory effect on transcription. Using coimmunoprecipitation and in vitro binding assays, we show that A and B interact directly and that mutations which disrupt this interaction inhibit repressor activity. The Rb pocket was originally defined as the binding site for oncoproteins from DNA tumor viruses such as adenovirus E1a. We present evidence that E1a interacts with a site formed by the interaction of A and B and that this interaction with A and B induces or stabilizes the A-B interaction.


Sign in / Sign up

Export Citation Format

Share Document