Improvement in Power of Shingled Solar Cells for Photo-Voltaic Module

2020 ◽  
Vol 20 (11) ◽  
pp. 7096-7099
Author(s):  
Hongsub Jee ◽  
Jinho Song ◽  
Daehan Moon ◽  
Jaehyeong Lee ◽  
Chaehwan Jeong

This paper presents a study on the effects of heat treatment conditions on electrically conductive adhesives. Among the advantages of the shingled solar cells include larger active area and smaller current density since one of the main factors of the power loss is due to a decrease in current density. Therefore, when there is a small current, there is a benefit in regards to the power loss. The advantage of this new technique of developing photovoltaic modules is the increase of module power using the same installed area. Electrically conductive adhesives play an important role in the manufacture of shingled solar cells and understanding the effects of its curing condition is necessary to maximize its output power. Through changing the curing time and temperature, the optimized curing conditions for electrically conductive adhesives and fabricated shingled strings for development of a module could be established. Finally, we demonstrated a 500 mm × 500 mm photovoltaic module with a conventional and the other using the shingled method for purposes of comparison and a shingled module showed about 29% increase in maximum output power compared to a conventional module with the same installed area.

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Hong Yang ◽  
He Wang ◽  
Dingyue Cao ◽  
Dangmin Sun ◽  
Xiaobao Ju

During the course of solar module encapsulation, the output power of crystalline silicon solar module is less than the sum of the maximum output power of the constituents because of power loss. So it is very important to investigate the power loss caused by encapsulation materials and module production process. In this paper, the power loss of crystalline silicon solar module is investigated by experiments systematically for the first time. It is found that the power loss is mainly caused by the resistance of ribbon and mismatch of solar cells; the total power loss is as high as 3.93% for solar module composed of 72 cells (125 mm × 125 mm) connected in series. Analyzing and reducing the power losses are beneficial to optimizing encapsulation process for the solar module. The results presented in this study give out a direction to decreasing power loss and optimizing encapsulation process of crystalline silicon solar module.


2021 ◽  
Author(s):  
Mohsen Daryani ◽  
Ali Rostami ◽  
Gaffar Darvish ◽  
Mohammad Kazem Morravej Farshi

Abstract It has been shown that quantum coherence induced by incoherent light can increase the efficiency of solar cells. Here we evaluate the effect of such coherence in the intermediate band solar cells. We first examine a six-level quantum IBSC model and demonstrate by simulation that the maximum of output power in a solar cell with quantum structure increases more than 16 percent in the case of coherence existence. We then propose an IBSC model which can absorb continuous spectra of sunlight and show that the quantum coherence can increase the output power of the cell. For instance, calculations indicate that the coherence makes an increase of about 31% in the maximum output power of a cell that the width of the conduction and intermediate bands are 100 and 10 meV, respectively. Also, our calculations show that the quantum coherence effect is still observed in increasing the solar cell power by expanding the width of the conduction band, although the output power is reduced due to increase in the thermalization loss. However, expanding the width of the intermediate band reduces the coherence effect.


2014 ◽  
Vol 620 ◽  
pp. 220-224
Author(s):  
Xin Sheng He ◽  
Zuo Cai Dai ◽  
Chun Fu Gao ◽  
Shao Tai Deng

For the maximum output power varies with changes in load characteristics match the characteristics of solar cells in photovoltaic power generation system, the system runs through dynamic MPPT maximum power of self-optimizing process to achieve power from the PV charge control match. First, the output characteristic simulation analysis of the solar load resistive, capacitive load showed that solar power batteries for load matching efficiency is higher than in a purely resistive load. Then, using the improved algorithm for variable step size perturbation and observation of the received output power of solar power and load matching control, experiments showed that the optimum operating point of the circuit can control the real-time monitoring of solar cells and load. The output power from the battery load matching circuit to match the time working in the best working condition, if the energy is surplus or shortage, the system can control dynamic self-optimizing adjustment to charge, which leads to batteries absorbed power increasing and the efficiency of solar energy collection improving.


2019 ◽  
Vol 484 ◽  
pp. 732-739 ◽  
Author(s):  
Jisu Park ◽  
Wonje Oh ◽  
Hyungyoul Park ◽  
Chaehwan Jeong ◽  
Byoungdeog Choi ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Mihai Răzvan Mitroi ◽  
Valerică Ninulescu ◽  
Laurenţiu Fara

A tandem solar cell consisting of a bottom c-Si high-efficiency subcell and a top low-cost Cu2O subcell in parallel configuration is evaluated for the first time by a use of an electrical model. A numerical simulation based on the single-diode model of the solar cell is performed. The numerical method determines both the model parameters and the parameters of the subcells and tandem from the maximization of output power. The simulations indicate a theoretical limit value of the tandem power conversion efficiency of 31.23% at 298 K. The influence of temperature on the maximum output power is analyzed. This tandem configuration allows a great potential for the development of a new generation of low-cost high-efficiency solar cells.


Author(s):  
Venkata Madhava Ram Tatabhatla ◽  
Anshul Agarwal ◽  
Tirupathiraju Kanumuri

The panels in the solar photo-voltaic array receive different levels of irradiation under shading conditions. This degrades the desired output power and results in multiple peaks within the voltage-power characteristics because of mismatch in row currents. Consequently, tracking of the global maximum power point seeks more complex algorithms. In order to mitigate the effects of shading, this work presents a novel reconfiguration technique that relocates the panels of conventional TCT configuration using TomTom puzzle pattern. In the proposed work, physical locations of shaded and unshaded panels are moved without altering the electrical circuitry. The proposed TomTom reconfiguration dilutes the concentrated shade, minimises the mismatch of row currents and yields maximum output power with less number of peaks in voltage-power characteristics. In addition to that, the behaviour of solar photo-voltaic array under moving shading conditions is also evaluated to highlight the potential of the proposed reconfiguration scheme.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 598
Author(s):  
Kuei-Hsiang Chao ◽  
Pei-Lun Lai

This paper aims to develop an online diagnostic mechanism, doubling as a maximum power point tracking scheme, for a photovoltaic (PV) module array. In case of malfunction or shadow event occurring to a PV module, the presented diagnostic mechanism is enabled, automatically and immediately, to reconfigure a PV module array for maximum output power operation under arbitrary working conditions. Meanwhile, the malfunctioning or shaded PV module can be located instantly by this diagnostic mechanism according to the array configuration, and a PV module replacement process is made more efficient than ever before for the maintenance crew. In this manner, the intended maximum output power operation can be resumed as soon as possible in consideration of a minimum business loss. Using a particle swarm optimization (PSO)-based algorithm, the PV module array is reconfigured by means of switch manipulations between modules, such that a load is supplied with the maximum amount of output power. For compactness, the PSO-based online diagnostic algorithm is implemented herein using a TMS320F2808 digital signal processor (DSP) and is experimentally validated as successful to identify a malfunctioning PV module at the end of this work.


Sign in / Sign up

Export Citation Format

Share Document