Silver Abietate and β-Cyclodextrin Inclusion Complex Doped Poly(vinyl alcohol) Nanowebs

2021 ◽  
Vol 21 (11) ◽  
pp. 5622-5627
Author(s):  
Aylin Yildiz ◽  
A. Ozgur Agirgan ◽  
Derman Vatansever Bayramol ◽  
Ugur Ergunay ◽  
Riza Atav

In this study, guesthost inclusion complexes of silver abietate with β-cyclodextrin were prepared by kneading and physical mixing techniques, and analyzed via fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analyser (TGA). The 1:1 and 1:2 stoichiometry of the guesthost were prepared. Obtained FTIR and TGA results showed that formation of silver abietate:β-cyclodextrin (Ag-A:β-CD) inclusion complexes occurred at a mass ratio of both 1:1 and 1:2. Furthermore, prepared Ag-A:β-CD (1:2) inclusion complex was doped in Poly(vinyl alcohol) nanofibers during electrospinning process for obtaining nanowebs. The formation of nanowebs were investigated under scanning electron microscope (SEM), X-Ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analyser (TGA). The results confirmed Ag-A:β-CD inclusion complex containing Poly(vinyl alcohol) (PVA) nanoweb production.

2020 ◽  
Vol 27 (120) ◽  
pp. 230-235
Author(s):  
Rıza ATAV ◽  
Aylin YILDIZ ◽  
Derman VATANSEVER BAYRAMOL ◽  
Ahmet Özgür AĞIRGAN ◽  
Uğur ERGÜNAY

In this study, guest:host inclusion complexes of silver cyclohexane di carboxylate (Ag-CdC) with β-cyclodextrin were prepared by kneading and physical mixing techniques, and analyzed via Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analyser (TGA). The 1:1 and 1:2 stoichiometry of the guest:host were prepared. Obtained FTIR and TGA results showed that formation of silver cyclohexane di carboxylate (Ag-CdC): β-cyclodextrin (β-CD) inclusion complexes occurred at a mass ratio of both 1:1 and 1:2. Furthermore, these prepared inclusion complexes were doped in poly(vinyl alcohol) nanofibers during electrospinning process for obtaining nanowebs. The formation of nanowebs were investigated with scanning electron microscopy (SEM). Besides, FTIR and TGA analysis were also carried out. Results showed that both inclusion complex preparation and inclusion complex added PVA nanowebs production were successful.


2019 ◽  
Vol 70 (03) ◽  
pp. 255-258 ◽  
Author(s):  
RIZA ATAV ◽  
AYLIN YILDIZ ◽  
DERMAN VATANSEVER BAYRAMOL ◽  
AHMET ÖZGÜR AĞIRGAN

n this study, the preparation of inclusion complexes according to kneading and physical mixing techniques at 1:1 and 1:2 (guest:host) mass ratios of Fe 3 O 4 @HA@Ag and β-cyclodextrin were studied. Fourier transformed infrared spectroscopy, thermogravimetric analyses and scanning electron microscope analysesof the prepared complexes were carried out. According to the results obtained, it was observed Fe 3 O 4 @HA@Ag especially forms inclusion complex with β-cyclodextrin at a mass ratio of 1:2. In the second part of this study, results related to the use of these inclusion complexes during electrospinning process in order to obtain antibacterial nanowebs, which could potentially be used in medical wounds, will be given.


2016 ◽  
Vol 701 ◽  
pp. 265-269 ◽  
Author(s):  
Md Shariful Islam ◽  
Fayeka Mansura ◽  
Amalina Muhammad Afifi ◽  
Bee Chin Ang

In this study, poly (vinyl alcohol) / chitosan blend nanofibers were synthesized by electrospinning process in different polyvinyl alcohol and chitosan weight ratios. The nanofibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). SEM images showed that, 50:50 poly vinyl alcohol/chitosan blend was the ideal ratio for producing beadless nanofiber. The average diameter of the beadless nanofiber was found to be 123 nm. FTIR and XRD results demonstrated the presence of intermolecular hydrogen bonding between the molecules of poly vinyl alcohol and chitosan.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 691
Author(s):  
O. Sánchez-Aguinagalde ◽  
Ainhoa Lejardi ◽  
Emilio Meaurio ◽  
Rebeca Hernández ◽  
Carmen Mijangos ◽  
...  

Chitosan (CS) and poly (vinyl alcohol) (PVA) hydrogels, a polymeric system that shows a broad potential in biomedical applications, were developed. Despite the advantages they present, their mechanical properties are insufficient to support the loads that appear on the body. Thus, it was proposed to reinforce these gels with inorganic glass particles (BG) in order to improve mechanical properties and bioactivity and to see how this reinforcement affects levofloxacin drug release kinetics. Scanning electron microscopy (SEM), X-ray diffraction (XRD), swelling tests, rheology and drug release studies characterized the resulting hydrogels. The experimental results verified the bioactivity of these gels, showed an improvement of the mechanical properties and proved that the added bioactive glass does affect the release kinetics.


2017 ◽  
Vol 41 (9) ◽  
pp. 541-546 ◽  
Author(s):  
Farzaneh Ebrahimzadeh

Nickel nanoparticles (NiNPs) supported on diphenylphosphinated poly(vinyl alcohol- co-ethylene) (DPP-PVA- co-PE) were synthesised by first reacting poly(vinyl alcohol- co-ethylene) with chlorodiphenylphosphine (ClPPh2) under basic conditions and then treating the product with Ni(OAc)2 followed by reduction with NaBH4. (DPP-PVA- co-PE)-NiNPs, a new metallised polymer, was then shown to efficiently catalyse Mizoroki–Heck reactions of aryl iodides, bromides or activated chlorides with olefins such as styrene and n-butyl acrylate in dimethylformamide. In contrast with other polymer-supported catalysts, the main advantage of this method is the low cost of the catalyst due to the simple synthetic route using easily obtained materials and good recoverability. Transmission electron microscopy and X-ray diffraction measurements were used to show the high metal dispersion and small sizes of Ni nanoparticle on the surface of the modified polymer. DPP-PVA- co-PE-NiNPs could be recycled several times.


2019 ◽  
Vol 819 ◽  
pp. 145-150
Author(s):  
Thapakorn Chareonying ◽  
Junnasir M. Sakilan ◽  
Theerasak Rojanarata ◽  
Prasopchai Patrojanasophon ◽  
Prasert Akkaramongkolporn ◽  
...  

Nanofibers have been widely used for tissue engineering. Using charged polymers for the preparation of nanofibers can be useful for the loading of substances or macromolecules. Dual charge nanofiber mats are expected to be able to immobilize both positively charged and negatively charged substances in one versatile nanofiber mat. The purpose of this study was to prepare and characterize dual-charge nanofibers generated from poly (vinyl alcohol) (PVA)/poly-(acrylic acid-co-maleic acid) (PAMA) and chitosan (CS)/PVA. The polymer solutions of PAMA/PVA (1:1.63 w/w) and CS/PVA (1:2.33 w/w) were electrospun to form the nanofibers using dual-jet electrospinning process. The obtained dual-charge nanofibers were thermally crosslinked by leaving the nanofibers in the oven at 110-130 °C for 0.5, 1, 3, 5 h. The appearance of the nanofiber mat was characterized by a scanning electron microscope (SEM), and the diameter of nanofibers were determined by an image analysis software (J-micro vision®). The percentage water insolubilization and FT-IR spectra were also determined. The dual-size nanofiber mats with smooth and bead-free fibers were obtained. The diameter of the PAMA/PVA and CS/PVA fibers was 574.54 ± 142.98 nm and 225.69 ± 41.92 nm, respectively. The desirable temperature and time for the crosslink of the dual-charge nanofiber mats was 130 °C for 1 h which could provide a high insolubilization with water capacity of 93.22 ± 2.23%.


2016 ◽  
Vol 32 (4) ◽  
pp. 411-428 ◽  
Author(s):  
Nor Hasrul Akhmal Ngadiman ◽  
Noordin Mohd Yusof ◽  
Ani Idris ◽  
Denni Kurniawan ◽  
Ehsan Fallahiarezoudar

The use of electrospinning has gained substantial interest in the development of tissue engineering scaffolds due to its ability to produce nanoscale fibers which can mimic the geometry of extracellular tissues. Besides geometry, mechanical property is one of the main elements to be considered when developing tissue engineering scaffolds. In this study, the electrospinning process parameter settings were varied in order to find the optimum setting which can produce electrospun nanofibrous mats with good mechanical properties. Maghemite (γ-Fe2O3) was mixed with poly(vinyl alcohol) and then electrospun to form nanofibers. The five input variable factors involved were nanoparticles content, voltage, flow rate, spinning distance, and rotating speed, while the response variable considered was Young’s modulus. The performance of electrospinning process was systematically screened and optimized using response surface methodology. This work truly demonstrated the sequential nature of designed experimentation. Additionally, the application of various designs of experiment techniques and concepts was also demonstrated. Results revealed that electrospun nanofibrous mats with maximum Young’s modulus (273.51 MPa) was obtained at optimum input settings: 9 v/v% nanoparticle content, 35 kV voltage, 2 mL/h volume flow rate, 8 cm spinning distance, and 3539 r/min of rotating speed. The model was verified successfully by performing confirmation experiments. The nanofibers characterization demonstrated that the nanoparticles were well dispersed inside the nanofibers, and it also showed that the presence of defects on the nanofibers can decrease their mechanical strength. The biocompatibility performance was also evaluated and it was proven that the presence of γ-Fe2O3 enhanced the cell viability and cell growth rate. The developed poly(vinyl alcohol)/γ-Fe2O3 electrospun nanofiber mat has a good potential for tissue engineering scaffolds.


2015 ◽  
Vol 1094 ◽  
pp. 41-48
Author(s):  
Ri Min Cong ◽  
Huai Qing Yu ◽  
Yan Gong Yang ◽  
Si Yi Yang ◽  
Jiao Li ◽  
...  

A dumbbell-shaped polyrotaxane based on polytetrahydrofuran bis (3-aminopropyl) terminated and α-cyclodextrins using polyamidoamine (PAMAM) dentrimers as bulky stoppers was successfully prepared. The1H NMR results show that the peaks of α-CDs in these polyrotaxanes are broadened compared with pure α-CDs. Wide-angle X-ray diffraction (XRD) measurements of the resulting polyrotaxanes suggest to produce a channel-type crystalline structure of inclusion complex. Thermogravimetric analysis (TGA) of the resultant polyrotaxanes show that α-CDs are significantly stabilized by the formation of the inclusion complexes.


1991 ◽  
Vol 245 ◽  
Author(s):  
Phillip B. Messersmith ◽  
Samuel I. Stupp

ABSTRACTThis paper describes the synthesis, structure and properties of a new layered nanocomposite which may have applications in cementitious systems. This material is one example of a new class of materials which consist of inorganic crystals containing intercalated organic polymer. The nanocomposite is synthesized by precipitating Ca2Al(OH)6[X]·nH2O (X=OH−, CO3−2) in the presence of poly(vinyl alcohol) (PVA). X-ray diffraction analysis indicates that the nanocomposite consists of calcium aluminate layers separated by interlayers containing anions, water and PVA. The intercalation of PVA can only be accomplished during crystal growth and is accompanied by an expansion in layer spacing from ˜8 Å to ˜18 Å. The nanocomposite exhibited enhanced thermal stability and when compacted into a cylinder was found to have more than twice the compressive strength than the pure calcium aluminate.


Sign in / Sign up

Export Citation Format

Share Document