Simulation Investigation on Environment-Induced Pitting Corrosion on the Metal Surface

2021 ◽  
Vol 13 (5) ◽  
pp. 820-828
Author(s):  
Wei Zhang ◽  
Shengli Lv ◽  
Leijiang Yao ◽  
Xiaoyan Tong

The prediction of corrosion damage is one of effective research methods in the safety inspection of aging aircraft structures. A mathematical model for quantifying corrosion damage is used in this paper to predict the onset of corrosion on structural surfaces exposed to aggressive environments. Based on the finite difference technique, the evolution process of local pitting corrosion on the surface of aluminum alloy in the medium is simulated, which can consider the sudden onset and the randomness of pitting corrosion. The effect of local ion concentration and oxide film damage on subsequent pitting nucleation was analyzed. Based on the efficient calculation program, the effectiveness of the mathematical model is verified by the comparison between the corrosion damage morphology and the experimental data in the literature. The results show a more widespread distribution of subsequent pits because of stronger aggressive ions are released during the life cycle of active pits and the higher diffusion coefficient of the aggressive ions. The three dimensional morphology is generated by image processing method based on the gray value of the two dimensional image of pits.

2021 ◽  
Vol 40 (4) ◽  
pp. 8493-8500
Author(s):  
Yanwei Du ◽  
Feng Chen ◽  
Xiaoyi Fan ◽  
Lei Zhang ◽  
Henggang Liang

With the increase of the number of loaded goods, the number of optional loading schemes will increase exponentially. It is a long time and low efficiency to determine the loading scheme with experience. Genetic algorithm is a search heuristic algorithm used to solve optimization in the field of computer science artificial intelligence. Genetic algorithm can effectively select the optimal loading scheme but unable to utilize weight and volume capacity of cargo and truck. In this paper, we propose hybrid Genetic and fuzzy logic based cargo-loading decision making model that focus on achieving maximum profit with maximum utilization of weight and volume capacity of cargo and truck. In this paper, first of all, the components of the problem of goods stowage in the distribution center are analyzed systematically, which lays the foundation for the reasonable classification of the problem of goods stowage and the establishment of the mathematical model of the problem of goods stowage. Secondly, the paper abstracts and defines the problem of goods loading in distribution center, establishes the mathematical model for the optimization of single car three-dimensional goods loading, and designs the genetic algorithm for solving the model. Finally, Matlab is used to solve the optimization model of cargo loading, and the good performance of the algorithm is verified by an example. From the performance evaluation analysis, proposed the hybrid system achieve better outcomes than the standard SA model, GA method, and TS strategy.


Author(s):  
Mohammed Rajik Khan ◽  
Puneet Tandon

In order to machine multiple sculptured surfaces with reduced machining time and high accuracy of the machined parts, shape design of a customised multi-point rotary cutting tool needs to be evolved. In the present work, a novel design of a generic multi-profile form milling cutter is developed for machining various multiple sculptured surfaces. This article describes in detail the mathematical model to design an accurate three-dimensional geometry of a generic multi-profile form milling cutter. Use of non-uniform rational B-spline curve(s) and sweep surfaces enables to control the shape of cutting flutes of the generic multi-profile form milling cutter. The article also discusses the methodology to develop a variety of cutters lying in the same conceptual family of multi-profile form milling cutter. To physically visualise the cutter and to show one of the downstream applications once a three-dimensional model of the cutter is available, one of the multi-profile form milling cutters is fabricated. The proposed methodology offers an intuitive high-quality mathematical model for a generic family of multi-profile form milling cutters, which is different from the traditional three-dimensional models.


1979 ◽  
Vol 101 (3) ◽  
pp. 326-336 ◽  
Author(s):  
M. A. Serag-Eldin ◽  
D. B. Spalding

The paper presents a mathematical model for three-dimensional, swirling, recirculating, turbulent flows inside can combustors. The present model is restricted to single-phase, diffusion-controlled combustion, with negligible radiation heat-transfer; however, the introduction of other available physical models can remove these restrictions. The mathematical model comprises differential equations for: continuity, momentum, stagnation enthalpy, concentration, turbulence energy, its dissipation rate, and the mean square of concentration fluctuations. The simultaneous solution of these equations by means of a finite-difference solution algorithm yields the values of the variables at all internal grid nodes. The prediction procedure, composed of the mathematical model and its solution algorithm, is applied to predict the fields of variables within a representative can combustor; the results are compared with corresponding measurements. The predicted results give the same trends as the measured ones, but the quantitative agreement is not always acceptable; this is attributed to the combustion process not being truly diffusion-controlled for the experimental conditions investigated.


Author(s):  
S-J Seo ◽  
K-Y Kim ◽  
S-H Kang

A numerical study is presented for Reynolds-averaged Navier-Stokes analysis of three-dimensional turbulent flows in a multiblade centrifugal fan. Present work aims at development of a relatively simple analysis method for these complex flows. A mathematical model of impeller forces is obtained from the integral analysis of the flow through the impeller. A finite volume method for discretization of governing equations and a standard k-ɛ model as turbulence closure are employed. For the validation of the mathematical model, the computational results for velocity components, static pressure, and flow angles at the exit of the impeller were compared with experimental data. The comparisons show generally good agreement, especially at higher flow coefficients.


2010 ◽  
Vol 160-162 ◽  
pp. 1680-1684
Author(s):  
Xing Jun Gao ◽  
Qing Liu ◽  
Ping Zou ◽  
Jian Song ◽  
Ping Li

The fundamental principle of the twist drill conical grinding method was introduced. The mathematical model of the twist drill was established. Mathematical model to establish drill bit is the geometric design, manufacture, cutting analysis and modeling on the basis of the drilling process. According to the twist drill grinding principle, using Pro/E the three-dimensional modeling of the twist drill was completed, and the feature of the conical grinding method was analyzed.


2005 ◽  
Vol 11 (12) ◽  
pp. 1469-1486 ◽  
Author(s):  
Ashutosh Bagchi

Model updating is an important step for correlating the mathematical model of a structure to the real one. There are a variety of techniques available for model updating using dynamic and static measurements of the structure’s behavior. This paper concentrates on the model updating techniques using the natural frequencies or frequencies and mode shapes of a structure. An iterative technique is developed based on the matrix update method. The method hasbeenappliedtothefiniteelement models of a three span continuous steel free deck bridge located in western Canada. The finite element models of the bridge have been constructed using three-dimensional beam and facet shell elements and the models have been updated using the measured frequencies. From the study it is clear that the initial model needs to be built such that it represents the actual structure as closely as possible. The results demonstrate that the difference between the modal parameters from the model and field tests affect the quality of the model updating process.


2017 ◽  
Vol 12 (2) ◽  
pp. 25-35 ◽  
Author(s):  
A. E. Abbasov

A mathematical model of management of recirculation of motor units is developed. It is shown that the efficiency of recirculation control is achieved with a decrease in the content of toxic substances in the exhaust; Limiting the maximum combustion temperature of the fuel and the pressure in the combustion chamber; Speed control. Based on the mathematical model, an algorithm is developed for calculating the control dependence for the regulation of the position of the electromechanical recirculation valve in specialized graphic computer environments with three-dimensional and two-dimensional visualization of analysis and calculation results. Calculation of the amount of emissions of harmful substances without the developed algorithm and using the developed algorithm is carried out.


2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Luisa Consiglieri ◽  
Ana Rute Domingos

We deal with the transmembrane sodium diffusion in a nerve. We study a mathematical model of a nerve fibre in response to an imposed extracellular stimulus. The presented model is constituted by a diffusion-drift vectorial equation in a bidomain, that is, two parabolic equations defined in each of the intra- and extra-regions. This system of partial differential equations can be understood as a reduced three-dimensional Poisson-Nernst-Planck model of the sodium concentration. The representation of the membrane includes a jump boundary condition describing the mechanisms involved in the excitation-contraction couple. Our first novelty comes from this general dynamical boundary condition. The second one is the three-dimensional behaviour of the extracellular stimulus. An analytical solution to the mathematical model is proposed depending on the morphology of the excitation.


2021 ◽  
Vol 11 (2) ◽  
pp. 788
Author(s):  
Aceng Sambas ◽  
Sundarapandian Vaidyanathan ◽  
Talal Bonny ◽  
Sen Zhang ◽  
Sukono ◽  
...  

This paper starts with a review of three-dimensional chaotic dynamical systems equipped with special curves of balance points. We also propose the mathematical model of a new three-dimensional chaotic system equipped with a closed butterfly-like curve of balance points. By performing a bifurcation study of the new system, we analyze intrinsic properties such as chaoticity, multi-stability, and transient chaos. Finally, we carry out a realization of the new multi-stable chaotic model using Field-Programmable Gate Array (FPGA).


Sign in / Sign up

Export Citation Format

Share Document