Updating the Mathematical Model of a Structure Using Vibration Data

2005 ◽  
Vol 11 (12) ◽  
pp. 1469-1486 ◽  
Author(s):  
Ashutosh Bagchi

Model updating is an important step for correlating the mathematical model of a structure to the real one. There are a variety of techniques available for model updating using dynamic and static measurements of the structure’s behavior. This paper concentrates on the model updating techniques using the natural frequencies or frequencies and mode shapes of a structure. An iterative technique is developed based on the matrix update method. The method hasbeenappliedtothefiniteelement models of a three span continuous steel free deck bridge located in western Canada. The finite element models of the bridge have been constructed using three-dimensional beam and facet shell elements and the models have been updated using the measured frequencies. From the study it is clear that the initial model needs to be built such that it represents the actual structure as closely as possible. The results demonstrate that the difference between the modal parameters from the model and field tests affect the quality of the model updating process.

2006 ◽  
Vol 22 (3) ◽  
pp. 781-802 ◽  
Author(s):  
Derek Skolnik ◽  
Ying Lei ◽  
Eunjong Yu ◽  
John W. Wallace

Identification of the modal properties of the UCLA Factor Building, a 15-story steel moment-resisting frame, is performed using low-amplitude earthquake and ambient vibration data. The numerical algorithm for subspace state-space system identification is employed to identify the structural frequencies, damping ratios, and mode shapes corresponding to the first nine modes. The frequencies and mode shapes identified based on the data recorded during the 2004 Parkfield earthquake ( Mw=6.0) are used to update a three-dimensional finite element model of the building to improve correlation between analytical and identified modal properties and responses. A linear dynamic analysis of the updated model excited by the 1994 Northridge earthquake is performed to assess the likelihood of structural damage.


2021 ◽  
Vol 40 (4) ◽  
pp. 8493-8500
Author(s):  
Yanwei Du ◽  
Feng Chen ◽  
Xiaoyi Fan ◽  
Lei Zhang ◽  
Henggang Liang

With the increase of the number of loaded goods, the number of optional loading schemes will increase exponentially. It is a long time and low efficiency to determine the loading scheme with experience. Genetic algorithm is a search heuristic algorithm used to solve optimization in the field of computer science artificial intelligence. Genetic algorithm can effectively select the optimal loading scheme but unable to utilize weight and volume capacity of cargo and truck. In this paper, we propose hybrid Genetic and fuzzy logic based cargo-loading decision making model that focus on achieving maximum profit with maximum utilization of weight and volume capacity of cargo and truck. In this paper, first of all, the components of the problem of goods stowage in the distribution center are analyzed systematically, which lays the foundation for the reasonable classification of the problem of goods stowage and the establishment of the mathematical model of the problem of goods stowage. Secondly, the paper abstracts and defines the problem of goods loading in distribution center, establishes the mathematical model for the optimization of single car three-dimensional goods loading, and designs the genetic algorithm for solving the model. Finally, Matlab is used to solve the optimization model of cargo loading, and the good performance of the algorithm is verified by an example. From the performance evaluation analysis, proposed the hybrid system achieve better outcomes than the standard SA model, GA method, and TS strategy.


2021 ◽  
Vol 11 (9) ◽  
pp. 4130
Author(s):  
Oleksij Fomin ◽  
Alyona Lovska ◽  
Václav Píštěk ◽  
Pavel Kučera

The study deals with determination of the vertical load on the carrying structure of a flat wagon on the 18–100 and Y25 bogies using mathematic modelling. The study was made for an empty wagon passing over a joint irregularity. The authors calculated the carrying structure of a flat wagon with the designed parameters and the actual features recorded during field tests. The mathematical model was solved in MathCad software. The study found that application of the Y25 bogie for a flat wagon with the designed parameters can decrease the dynamic load by 41.1% in comparison to that with the 18–100 bogie. Therefore, application of the Y25 bogie under a flat wagon with the actual parameters allows decreasing the dynamic loading by 41.4% in comparison to that with the 18–100 bogie. The study also looks at the service life of the supporting structure of a flat wagon with the Y25 bogie, which can be more than twice as long as the 18–100 bogie. The research can be of interest for specialists concerned with improvements in the dynamic characteristics and the fatigue strength of freight cars, safe rail operation, freight security, and the results of the research can be used for development of innovative wagon structures.


2020 ◽  
Vol 19 (1) ◽  
pp. 63-75
Author(s):  
R. Dorofeev ◽  
A. Tumasov ◽  
A. Sizov ◽  
A. Kocherov ◽  
A. Meshkov ◽  
...  

The paper describes the process and results of the development of the light commercial electric vehicle. In order to ensure maximum energy efficiency of the developed vehicle the key parameters of the original electric motor. The article also presents the results of power electronic thermal calculation. For the mathematical model of the vehicle, the driving cycle parameters of the electric platform were determined in accordance with UNECE Regulations No 83, 84. The driving cycle was characterized by four successive urban and suburban cycles. The mathematical model also takes into account the time phases of the cycle, which include idling, vehicle idling, acceleration, constant speed movement, deceleration, etc. The model of the electric part of the vehicle was developed using MatLab-Simulink (SimPowerSystems library) in addition to the mechanical part of the electric car. The electric part included the asynchronous electric motor, the motor control system and the inverter. This model at the output allows to obtain such characteristics of the electric motor as currents, flows and voltages of the stator and rotor in a fixed and rotating coordinate systems, electromagnetic moment, angular speed of rotation of the motor shaft. The developed model allowed to calculate and evaluate the performance parameters of the electric vehicle. Technical solutions of the electric vehicle design were verified by conducting strength calculations. In conclusion, the results of field tests of a commercial electric vehicle are presented.


2021 ◽  
pp. 95-102
Author(s):  
K. I Barinova ◽  
A. V Dolgopolov ◽  
O. A Orlova ◽  
M. A Pronin

Flutter numerical analysis of a dynamically scaled model (DSM) of a high aspect ratio wing was performed using experimentally obtained generalized parameters of eigen modes of vibrations. The DSM is made of polymer composite materials and is designed for aeroelastic studies in a high-speed wind tunnel. As a result of the analysis, safe operation conditions (flutter limits) of the DSM were determined. The input data to develop the flutter mathematical model are DSM modal test results, i.e. eigen frequencies, mode shapes, modal damping coefficients, and generalized masses obtained from the experiment. The known methods to determine generalized masses have experimental errors. In this work some of the most practical methods to get generalized masses are used: mechanical loading, quadrature component addition and the complex power method. Errors of the above methods were analyzed, and the most reliable methods were selected for flutter analysis. Comparison was made between the flutter analysis using generalized parameters and a pure theoretical one based on developing the mathematical model from the DSM design specifications. According to the design specifications, the mathematical model utilizes the beam-like schematization of the wing. The analysis was performed for Mach numbers from 0.2 to 0.8 and relative air densities of 0.5, 1, 1.5. Comparison of the two methods showed the difference in critical flutter dynamic pressure no more than 6%, which indicates good prospects of the flutter analysis based on generalized parameters of eigen modes.


2013 ◽  
Vol 351-352 ◽  
pp. 118-121
Author(s):  
He Long Xu ◽  
Jun Xiao ◽  
Yu Xin Zhang

Modulus of elasticity is an important input parameter in all kinds of structural analyses. The mathematical model used to identify the structural elastic modulus with measured Frequencies and mode shapes at several points is thusly built up in this paper, and then Gradient-Regularization method, an inverse problem solution method, is employed to solve the problem. General finite element program is compiled, and numerical examples have proved that the method of this thesis is efficient. The issues such as the choice of model error and the choice of measuring points are discussed as well.


2018 ◽  
Vol 18 (12) ◽  
pp. 1850157 ◽  
Author(s):  
Yu-Han Wu ◽  
Xiao-Qing Zhou

Model updating methods based on structural vibration data have been developed and applied to detecting structural damages in civil engineering. Compared with the large number of elements in the entire structure of interest, the number of damaged elements which are represented by the stiffness reduction is usually small. However, the widely used [Formula: see text] regularized model updating is unable to detect the sparse feature of the damage in a structure. In this paper, the [Formula: see text] regularized model updating based on the sparse recovery theory is developed to detect structural damage. Two different criteria are considered, namely, the frequencies and the combination of frequencies and mode shapes. In addition, a one-step model updating approach is used in which the measured modal data before and after the occurrence of damage will be compared directly and an accurate analytical model is not needed. A selection method for the [Formula: see text] regularization parameter is also developed. An experimental cantilever beam is used to demonstrate the effectiveness of the proposed method. The results show that the [Formula: see text] regularization approach can be successfully used to detect the sparse damaged elements using the first six modal data, whereas the [Formula: see text] counterpart cannot. The influence of the measurement quantity on the damage detection results is also studied.


Author(s):  
Yoshifumi Mori ◽  
Takashi Saito ◽  
Yu Mizobe

We focused on vibration characteristics of reciprocating compressors and constructed the mathematical model to calculate the natural frequencies and modes for crank angles and proposed a method to estimate the degree and the suspicious portion of failure by difference of temporal parameter values obtained using measuring data in operation and the mathematical model. In this paper, according to the proposed method, a case study is carried out using the field data, where the data were acquired before and after the failures occurred in the connecting parts of connecting rod, to prospect the difference between each parameter value for two operating states. Inspecting resonant characteristics each in the frequency response data relating to the natural frequencies for bending modes of the piston rod, we determined two resonant frequencies, which could correspond to the 1st and 2nd mode about bending of the piston rod. To equate the calculated each natural frequency from eigen value analysis based on the proposed model with each resonant frequency, we define the error function for the identified problem, namely optimum problem. In the identified results, it is found that some parameter values have much difference and the corresponding failure could occur around the connecting rod. We could show the possibility to detect both the change of the parameter values and the deterioration parts for two different kinds of the operating states by our proposed method.


2021 ◽  
Vol 13 (5) ◽  
pp. 820-828
Author(s):  
Wei Zhang ◽  
Shengli Lv ◽  
Leijiang Yao ◽  
Xiaoyan Tong

The prediction of corrosion damage is one of effective research methods in the safety inspection of aging aircraft structures. A mathematical model for quantifying corrosion damage is used in this paper to predict the onset of corrosion on structural surfaces exposed to aggressive environments. Based on the finite difference technique, the evolution process of local pitting corrosion on the surface of aluminum alloy in the medium is simulated, which can consider the sudden onset and the randomness of pitting corrosion. The effect of local ion concentration and oxide film damage on subsequent pitting nucleation was analyzed. Based on the efficient calculation program, the effectiveness of the mathematical model is verified by the comparison between the corrosion damage morphology and the experimental data in the literature. The results show a more widespread distribution of subsequent pits because of stronger aggressive ions are released during the life cycle of active pits and the higher diffusion coefficient of the aggressive ions. The three dimensional morphology is generated by image processing method based on the gray value of the two dimensional image of pits.


2019 ◽  
Vol 46 (9) ◽  
pp. 828-835
Author(s):  
Nilson Barbieri ◽  
Marlon Elias Marchi ◽  
Marcos José Mannala ◽  
Renato Barbieri ◽  
Lucas de Sant’Anna Vitor Barbieri ◽  
...  

The purpose of this work is to validate a nonlinear mathematical model (finite element method) for dynamic simulation of Stockbridge dampers of electric transmission line cables. To obtain the mathematical model, a nonlinear cantilever beam with a tip mass was used. The mathematical model incorporates a nonlinear stiffness matrix of the element due to the nonlinear curvature effect of the beam. To validate the mathematical model, the numerical results were compared with experimental data obtained on a machine adapted from cam test. Five different circular cam profiles with eccentricities of 0.25, 0.5, 0.75, 1.25, and 1.5 mm were used. Vibration data were collected through three accelerometers arranged along the sample. A good concordance was found between the numerical and experimental data. The same behavior was observed in tests of another Stockbridge damper excited by a shaker. The nonlinear behavior of the system was evidenced.


Sign in / Sign up

Export Citation Format

Share Document