scholarly journals PRDM1 Binds an Extensive Network of Genes to Regulate Human Natural Killer Cell Homeostasis

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2536-2536
Author(s):  
Xuxiang Liu ◽  
Yunfei Shi ◽  
Yuping Li ◽  
Ru Chen ◽  
Sheng Pan ◽  
...  

Natural killer (NK) cells are innate lymphocytes responsible for early defense against infections and malignant cells. Specific transcription factors crucial for NK cell development and function include PRDM1, which also regulates T cell homeostasis and is essential for the terminal differentiation of B cells into plasma cells. Importantly, PRDM1 deletion, methylation and loss-of-function mutations were commonly detected in NK cell malignancies. However, the detailed mechanisms through which PRDM1 regulates NK cell homeostasis are still largely undefined. Here, we employed an in vitro culture system of human NK cells isolated from healthy donors, in which the NK cells were cultured in the presence of IL-2 with or without an engineered feeder cell line, K562-Cl9-mb21, expressing membrane-bound IL-21, 4-1BBL and CD86. The NK cells were able to expand for months when co-cultured with feeder cells, whereas IL-2 alone could only maintain NK cell survival with limited proliferation for one week. We performed ChIP-seq to compare the genome-wide binding profiles of PRDM1 in NK cells grown with or without feeder cells. We found that PRDM1 bound much fewer target genes (802) in NK cells with feeder than in NK cells with IL-2 alone (2880), and 98.5% (790/802) of the binding sites in feeder-stimulated NK cells overlapped with those found in NK cells without feeder. The PRDM1 consensus motifs were almost identical in both conditions. MEME analyses also identified motifs of other transcription factors enriched in the PRDM1 binding sites, such as the RUNX and T-Box families. Interestingly, the RUNX and T-Box motifs, among others, were more enriched in the PRDM1 binding sites lacking the PRDM1 motif than in those with the PRDM1 motif, which indicates that PRDM1 may often bind to DNA indirectly through other transcription factors. PRDM1 bound a large number of genes in the NK or T cell receptor signaling pathway, which are employed during NK cell activation. In addition, several genes encoding immune checkpoints that may restrict NK cell activation such as TIGIT, HAVCR2 (TIM3), and IL-1R8 were targeted by PRDM1. Many genes encoding NK cell inhibitory and activating receptors were also bound by PRDM1. Moreover, PRDM1 was found to target transcription factors that are important for NK cell development and homeostasis, such as the RUNX family, TBX21, MAF, and PRDM1 itself. Despite an extensive overlap of PRDM1 binding sites detected in NK cells grown with or without feeder cells, the most enriched pathways were not exactly the same. Importantly, our RNA-seq data on PRDM1-knockout NK cells validated the regulatory role of PRDM1 on a fraction of these PRDM1-bound genes and interestingly, PRDM1 appeared to be an activator for some of the genes, including those encoding immune checkpoint molecules TIGIT, HAVCR2, and IL-1R8. We also utilized ATAC-seq to examine the chromatin accessibility of NK cells grown with feeder cells or with IL-2 alone. We identified differentially enriched pathways for the NK cells cultured under different conditions. When compared with the PRDM1 ChIP-seq, we found that those PRDM1 binding sites that contain a consensus PRDM1 motif were less likely to be accessible to transposase than those without the PRDM1 motif, thereby confirming the transcriptional repressor role of PRDM1. To further understand how PRDM1 regulates its target genes in NK cells, we performed mass spectrometric analysis on the protein complexes associated with PRDM1. We were able to identify the interaction of PRDM1 with the corepressor Groucho (TLE3) and components from the SIN3, NCoR, and NuRD complex, which have been previously reported in mouse plasma cells. Surprisingly, the protein compositions of the PRDM1-associated complexes from the two NK cell populations were very different. Although PRDM1 is generally associated with transcriptional repression, we also detected the association of PRDM1 with transcriptional activators or coactivators, such as the RUNX-binding protein CBFβ and the T-Box family member EOMES, which may thereby upregulate some of the PRDM1 target genes. In summary, we found that PRDM1 binds and regulates an extensive network of genes responsible for NK cell activation and function. Extrinsic stimuli, as provided by the feeder cells, can alter the extent and profile of PRDM1 binding as well as the associated protein complexes and hence alter its regulatory function in NK cells. Disclosures No relevant conflicts of interest to declare.

2019 ◽  
Author(s):  
Domenico Viola ◽  
Ada Dona ◽  
Enrico Caserta ◽  
Estelle Troadec ◽  
Emine Gulsen Gunes ◽  
...  

AbstractDaratumumab (Dara), a multiple myeloma (MM) therapy, is an antibody against the surface receptor CD38, which is expressed not only on plasma cells but also on NK cells and monocytes. Correlative data have highlighted the immune-modulatory role of Dara, despite the paradoxical observation that Dara regimens decrease the frequency of total NK cells. Here we show that, despite this reduction, NK cells play a pivotal role in Dara anti-MM activity. CD38 on NK cells is essential for Dara-induced immune modulation, and its expression is restricted to NK cells with effector function. We also show that Dara induces rapid CD38 protein degradation associated with NK cell activation, leaving an activated CD38-negative NK cell population. CD38+ NK cell targeting by Dara also promotes monocyte activation, inducing an increase in T cell costimulatory molecules (CD86/80) and enhancing anti-MM phagocytosis activity ex-vivo and in vivo. In support of Dara’s immunomodulating role, we show that MM patients that discontinued Dara therapy because of progression maintain targetable unmutated surface CD38 expression on their MM cells, but retain effector cells with impaired cellular immune function. In summary, we report that CD38+ NK cells may be an unexplored therapeutic target for priming the immune system of MM patients.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiang Zhang ◽  
Stéphanie Le Gras ◽  
Kevin Pouxvielh ◽  
Fabrice Faure ◽  
Lucie Fallone ◽  
...  

AbstractEOMES and T-BET are related T-box transcription factors that control natural killer (NK) cell development. Here we demonstrate that EOMES and T-BET regulate largely distinct gene sets during this process. EOMES is dominantly expressed in immature NK cells and drives early lineage specification by inducing hallmark receptors and functions. By contrast, T-BET is dominant in mature NK cells, where it induces responsiveness to IL-12 and represses the cell cycle, likely through transcriptional repressors. Regardless, many genes with distinct functions are co-regulated by the two transcription factors. By generating two gene-modified mice facilitating chromatin immunoprecipitation of endogenous EOMES and T-BET, we show a strong overlap in their DNA binding targets, as well as extensive epigenetic changes during NK cell differentiation. Our data thus suggest that EOMES and T-BET may distinctly govern, via differential expression and co-factors recruitment, NK cell maturation by inserting partially overlapping epigenetic regulations.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2100-2100
Author(s):  
Nina Shah ◽  
Dongxia Xing ◽  
Dean A. Lee ◽  
Laurence J.N. Cooper ◽  
William Decker ◽  
...  

Abstract Abstract 2100 Background: Multiple myeloma (MM) is the second most common hematologic malignancy in adults and, to date, is incurable. Allogeneic natural killer (NK) cells are active in various hematologic malignancies and may have a role against MM. Umbilical cord blood is a potential source for allogeneic NK cells and ex vivo expanded umbilical cord blood-derived NK (UCB-NK) cells demonstrate activity comparable to that of peripheral blood-derived NK cells. Here we demonstrate the anti-myeloma activity of UCB-NK cells expanded to clinical grade by a novel technique using artificial antigen presenting feeder cells (“K562 Clone 9” cells) modified to express IL-21 (“K562-cl9-mIL21”). Methods: Cord blood mononuclear cells (CBMCs) were cultured in 10% human serum albumin media with IL-2 (500 IU/ml) and K562-cl9-mIL21 feeder cells (2:1 feeder: CBMC ratio) for 21 days. Thereafter, cells were subjected to CD3-immunomagnetic depletion. CD3-negative cells were then used as effector cells in functional assays. Flow cytometry was used to confirm NK cell purity (C56+/CD3- cells) and a standard chromium-51 assay was performed to determine NK cell cytotoxicity. Targets included K562 cells, MM cell lines RPMI 8226, ARP-1 and U266, autologous non-neoplastic UCB cells (negative control) and bone marrow-derived CD138+ plasma cells from myeloma patients. Results: Expansion of CBMCs with K562-cl9-mIL21 yielded a >2000 fold expansion of NK cells, compared with 47 fold expansion of CD56-selected cells cultured with IL-2 alone (p <0.05). After CD3 depletion, UCB-NK cultures were comprised of 92% CD56+/CD3- cells. K562-cl9-mIL21-expanded UCB-NK cells demonstrated cytotoxicity against the classic NK cell target K562 as well as MM cell lines RPMI 8226, ARP-1 and U266 (Fig 1). In addition, these UCB-NK cells were also active against primary, bone marrow-derived CD138+ plasma cells from myeloma patients, an effect which was augmented by pre-incubation of UCB-NK cells with lenalidomide (Figure 2, NK=UCB-NK cells, NKR=UCB-NK cells+lenalidomide). Conclusions: UCB-NK cells can be expanded ex vivo to clinically relevant doses for allogeneic NK cell therapy via co-culture with K562-cl9-mIL21 feeder cells. Expanded UCB-NK cells are cytotoxic to myeloma cell lines and primary myeloma cells. Further development of UCB-NK cells as an adjunct therapy in stem cell transplantation for myeloma is warranted. Disclosures: Wang: Celgene: Research Funding; Onyx: Research Funding; Millenium: Research Funding; Novartis: Research Funding.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 577
Author(s):  
Adrián Fernández ◽  
Alfonso Navarro-Zapata ◽  
Adela Escudero ◽  
Nerea Matamala ◽  
Beatriz Ruz-Caracuel ◽  
...  

Natural killer (NK) cells represent promising tools for cancer immunotherapy. We report the optimization of an NK cell activation–expansion process and its validation on clinical-scale. Methods: RPMI-1640, stem cell growth medium (SCGM), NK MACS and TexMACS were used as culture mediums. Activated and expanded NK cells (NKAE) were obtained by coculturing total peripheral blood mononuclear cells (PBMC) or CD45RA+ cells with irradiated K562mbIL15-41BBL or K562mbIL21-41BBL. Fold increase, NK cell purity, activation status, cytotoxicity and transcriptome profile were analyzed. Clinical-grade NKAE cells were manufactured in CliniMACS Prodigy. Results: NK MACS and TexMACs achieved the highest NK cell purity and lowest T cell contamination. Obtaining NKAE cells from CD45RA+ cells was feasible although PBMC yielded higher total cell numbers and NK cell purity than CD45RA+ cells. The highest fold expansion and NK purity were achieved by using PBMC and K562mbIL21-41BBL cells. However, no differences in activation and cytotoxicity were found when using either NK cell source or activating cell line. Transcriptome profile showed to be different between basal NK cells and NKAE cells expanded with K562mbIL21-41BBL or K562mbIL15-41BBL. Clinical-grade manufactured NKAE cells complied with the specifications from the Spanish Regulatory Agency. Conclusions: GMP-grade NK cells for clinical use can be obtained by using different starting cells and aAPC.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yan Feng ◽  
Yan Li ◽  
Ying Zhang ◽  
Bo-Hao Zhang ◽  
Hui Zhao ◽  
...  

Abstract Background Brain ischemia compromises natural killer (NK) cell-mediated immune defenses by acting on neurogenic and intracellular pathways. Less is known about the posttranscriptional mechanisms that regulate NK cell activation and cytotoxicity after ischemic stroke. Methods Using a NanoString nCounter® miRNA array panel, we explored the microRNA (miRNA) profile of splenic NK cells in mice subjected to middle cerebral artery occlusion. Differential gene expression and function/pathway analysis were applied to investigate the main functions of predicted miRNA target genes. miR-1224 inhibitor/mimics transfection and passive transfer of NK cells were performed to confirm the impact of miR-1224 in NK cells after brain ischemia. Results We observed striking dysregulation of several miRNAs in response to ischemia. Among those miRNAs, miR-1224 markedly increased 3 days after ischemic stroke. Transfection of miR-1224 mimics into NK cells resulted in suppression of NK cell activity, while an miR-1224 inhibitor enhanced NK cell activity and cytotoxicity, especially in the periphery. Passive transfer of NK cells treated with an miR-1224 inhibitor prevented the accumulation of a bacterial burden in the lungs after ischemic stroke, suggesting an enhanced immune defense of NK cells. The transcription factor Sp1, which controls cytokine/chemokine release by NK cells at the transcriptional level, is a predicted target of miR-1224. The inhibitory effect of miR-1224 on NK cell activity was blocked in Sp1 knockout mice. Conclusions These findings indicate that miR-1224 may serve as a negative regulator of NK cell activation in an Sp1-dependent manner; this mechanism may be a novel target to prevent poststroke infection specifically in the periphery and preserve immune defense in the brain.


2018 ◽  
Vol 116 (3) ◽  
pp. 988-996 ◽  
Author(s):  
Han Wang ◽  
Jianxun Qi ◽  
Shuijun Zhang ◽  
Yan Li ◽  
Shuguang Tan ◽  
...  

Natural killer (NK) cells are important component of innate immunity and also contribute to activating and reshaping the adaptive immune responses. The functions of NK cells are modulated by multiple inhibitory and stimulatory receptors. Among these receptors, the activating receptor CD226 (DNAM-1) mediates NK cell activation via binding to its nectin-like (Necl) family ligand, CD155 (Necl-5). Here, we present a unique side-by-side arrangement pattern of two tandem immunoglobulin V-set (IgV) domains deriving from the ectodomains of both human CD226 (hCD226-ecto) and mouse CD226 (mCD226-ecto), which is substantially different from the conventional head-to-tail arrangement of other multiple Ig-like domain molecules. The hybrid complex structure of mCD226-ecto binding to the first domain of human CD155 (hCD155-D1) reveals a conserved binding interface with the first domain of CD226 (D1), whereas the second domain of CD226 (D2) both provides structural supports for the unique architecture of CD226 and forms direct interactions with CD155. In the absence of the D2 domain, CD226-D1 exhibited substantially reduced binding efficacy to CD155. Collectively, these findings would broaden our knowledge of the interaction between NK cell receptors and the nectin/Necl family ligands, as well as provide molecular basis for the development of CD226-targeted antitumor immunotherapeutics.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A824-A824
Author(s):  
Fay Dufort ◽  
Christopher Leitheiser ◽  
Gemma Mudd ◽  
Julia Kristensson ◽  
Alexandra Rezvaya ◽  
...  

BackgroundNatural killer (NK) cells are immune cells that can detect and eliminate tumor cells and bridge innate to adaptive immune responses. Tumor specific activation of NK cells is thus an area of active investigation in immune oncology, but to date has relied on complex biologic modalities (e.g., antibodies, fusion proteins, or cell therapies), each of which has inherent disadvantages in this application. Thus, alternative approaches are warranted. Bicycle® are small (ca. 1.5 kDa), chemically synthetic, structurally constrained peptides discovered via phage display and optimized using structure-driven design and medicinal chemistry approaches. We have now applied this technology to identify Bicycles that bind specifically to the key activating receptors, NKp46 and CD16a. When chemically coupled to tumor antigen binding Bicycles this results in highly potent, antigen-dependent receptor activation and NK cell activation. We term this new class of fully synthetic molecules Bicycle® natural killer- tumor-targeted immune cell agonists (NK-TICAs™) and we will describe their discovery and evaluation in this presentation.MethodsUsing our unique phage display screening platform, we have identified high affinity, selective binders to NKp46 and CD16a. By conjugating the Bicycle® NK cell-engaging binders to a model tumor antigen EphA2-binding Bicycle®, we have developed a bifunctional Bicycle NK-TICA™ molecule. In in vitro functional assays, we evaluated the ability of the Bicycle NK-TICAs™ to induce NK cell activation as well as cell-mediated cytotoxicity and cytokine production in NK-tumor co-culture assays.ResultsWe have developed a novel modular compound with high affinity and selectivity to NK cell receptors with specific tumor targeting capability. We demonstrate potent, selective binding of our Bicycles to receptor-expressing cells and the capability of the bifunctional molecule to induce NK cell function. With Bicycle's novel NK-TICA™ compound, we demonstrate engagement of NK cells, specific activation and function of NK cells, and enhanced EphA2-expressing tumor cytotoxicity, in a dose dependent manner.ConclusionsBicycle NK-TICAs™ are novel therapeutic agents capable of enhancing the landscape of immune oncology. We hypothesize that utilization of Bicycle NK-TICA™ as a multifunctional immune cell engager will promote modulation of NK cells, and infiltration and anti-tumor activity of NK cells in solid tumors. The data presented here provide initial proof of concept for application of the Bicycle technology to drive NK cell-mediated tumor immunity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Gianchecchi ◽  
Domenico V. Delfino ◽  
Alessandra Fierabracci

Autoimmune diseases recognize a multifactorial pathogenesis, although the exact mechanism responsible for their onset remains to be fully elucidated. Over the past few years, the role of natural killer (NK) cells in shaping immune responses has been highlighted even though their involvement is profoundly linked to the subpopulation involved and to the site where such interaction takes place. The aberrant number and functionality of NK cells have been reported in several different autoimmune disorders. In the present review, we report the most recent findings regarding the involvement of NK cells in both systemic and organ-specific autoimmune diseases, including type 1 diabetes (T1D), primary biliary cholangitis (PBC), systemic sclerosis, systemic lupus erythematosus (SLE), primary Sjögren syndrome, rheumatoid arthritis, and multiple sclerosis. In T1D, innate inflammation induces NK cell activation, disrupting the Treg function. In addition, certain genetic variants identified as risk factors for T1D influenced the activation of NK cells promoting their cytotoxic activity. The role of NK cells has also been demonstrated in the pathogenesis of PBC mediating direct or indirect biliary epithelial cell destruction. NK cell frequency and number were enhanced in both the peripheral blood and the liver of patients and associated with increased NK cell cytotoxic activity and perforin expression levels. NK cells were also involved in the perpetuation of disease through autoreactive CD4 T cell activation in the presence of antigen-presenting cells. In systemic sclerosis (SSc), in addition to phenotypic abnormalities, patients presented a reduction in CD56hi NK-cells. Moreover, NK cells presented a deficient killing activity. The influence of the activating and inhibitory killer cell immunoglobulin-like receptors (KIRs) has been investigated in SSc and SLE susceptibility. Furthermore, autoantibodies to KIRs have been identified in different systemic autoimmune conditions. Because of its role in modulating the immune-mediated pathology, NK subpopulation could represent a potential marker for disease activity and target for therapeutic intervention.


Haematologica ◽  
2020 ◽  
pp. 0-0
Author(s):  
Jessica Li ◽  
Sarah Whelan ◽  
Maya F. Kotturi ◽  
Deborah Meyran ◽  
Criselle D’Souza ◽  
...  

This study explored the novel immune checkpoint poliovirus receptor-related immunoglobulin domain-containing (PVRIG) in acute myeloid leukemia (AML). We showed that AML patient blasts consistently expressed the PVRIG ligand (poliovirus receptor-related 2, PVRL2). Furthermore, PVRIG blockade significantly enhanced NK cell killing of PVRL2+, poliovirus receptor (PVR)lo AML cell lines, and significantly increased NK cell activation and degranulation in the context of patient primary AML blasts. However, in AML patient bone marrow, NK cell PVRIG expression levels were not increased. To understand how PVRIG blockade might potentially be exploited therapeutically, we investigated the biology of PVRIG and revealed that NK cell activation resulted in reduced PVRIG expression on the cell surface. This occurred whether NK cells were activated by tumour cell recognition, cytokines (IL-2 and IL-12) or activating receptor stimulation (CD16 and NKp46). PVRIG was present at higher levels in the cytoplasm than on the cell surface, particularly on CD56bright NK cells, which further increased cytoplasmic PVRIG levels following IL-2 and IL-12 activation. PVRIG was continually transported to the cell surface via the endoplasmic reticulum (ER) and Golgi in both unstimulated and activated NK cells. Taken together, our findings suggest that anti- PVRIG blocking antibody functions by binding to surface-bound PVRIG, which undergoes rapid turnover in both unstimulated and activated NK cells. We conclude that the PVRIGPVRL2 immune checkpoint axis can feasibly be targeted with PVRIG blocking antibody for NK-mediated immunotherapy of PVRL2+ AML.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Vivian Vasconcelos Costa ◽  
Weijian Ye ◽  
Qingfeng Chen ◽  
Mauro Martins Teixeira ◽  
Peter Preiser ◽  
...  

ABSTRACT Natural killer (NK) cells play a protective role against dengue virus (DENV) infection, but the cellular and molecular mechanisms are not fully understood. Using an optimized humanized mouse model, we show that human NK cells, through the secretion of gamma interferon (IFN-γ), are critical in the early defense against DENV infection. Depletion of NK cells or neutralization of IFN-γ leads to increased viremia and more severe thrombocytopenia and liver damage in humanized mice. In vitro studies using autologous human NK cells show that DENV-infected monocyte-derived dendritic cells (MDDCs), but not monocytes, activate NK cells in a contact-dependent manner, resulting in upregulation of CD69 and CD25 and secretion of IFN-γ. Blocking adhesion molecules (LFA-1, DNAM-1, CD2, and 2β4) on NK cells abolishes NK cell activation, IFN-γ secretion, and the control of DENV replication. NK cells activated by infected MDDCs also inhibit DENV infection in monocytes. These findings show the essential role of human NK cells in protection against acute DENV infection in vivo, identify adhesion molecules and dendritic cells required for NK cell activation, and delineate the sequence of events for NK cell activation and protection against DENV infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control virus infection. These results show a critical role of human NK cells in controlling DENV infection in vivo and reveal the sequence of molecular and cellular events that activate NK cells to control dengue virus infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control virus infection. These results show a critical role of human NK cells in controlling DENV infection in vivo and reveal the sequence of molecular and cellular events that activate NK cells to control dengue virus infection.


Sign in / Sign up

Export Citation Format

Share Document