scholarly journals Observed and Simulated Upper-Tropospheric Water Vapor Feedback

2008 ◽  
Vol 21 (13) ◽  
pp. 3282-3289 ◽  
Author(s):  
A. Gettelman ◽  
Q. Fu

Abstract Satellite measurements from the Atmospheric Infrared Sounder (AIRS) in the upper troposphere over 4.5 yr are used to assess the covariation of upper-tropospheric humidity and temperature with surface temperatures, which can be used to constrain the upper-tropospheric moistening due to the water vapor feedback. Results are compared to simulations from a general circulation model, the NCAR Community Atmosphere Model (CAM), to see if the model can reproduce the variations. Results indicate that the upper troposphere maintains nearly constant relative humidity for observed perturbations to ocean surface temperatures over the observed period, with increases in temperature ∼1.5 times the changes at the surface, and corresponding increases in water vapor (specific humidity) of 10%–25% °C−1. Increases in water vapor are largest at pressures below 400 hPa, but they have a double peak structure. Simulations reproduce these changes quantitatively and qualitatively. Agreement is best when the model is sorted for satellite sampling thresholds. This indicates that the model reproduces the moistening associated with the observed upper-tropospheric water vapor feedback. The results are not qualitatively sensitive to model resolution or model physics.

2018 ◽  
Vol 32 (2) ◽  
pp. 273-287 ◽  
Author(s):  
David W. J. Thompson ◽  
Paulo Ceppi ◽  
Ying Li

Abstract In a recent study, the authors hypothesize that the Clausius–Clapeyron relation provides a strong constraint on the temperature of the extratropical tropopause and hence the depth of mixing by extratropical eddies. The hypothesis is a generalization of the fixed-anvil temperature hypothesis to the global atmospheric circulation. It posits that the depth of robust mixing by extratropical eddies is limited by radiative cooling by water vapor—and hence saturation vapor pressures—in areas of sinking motion. The hypothesis implies that 1) radiative cooling by water vapor constrains the vertical structure and amplitude of extratropical dynamics and 2) the extratropical tropopause should remain at roughly the same temperature and lift under global warming. Here the authors test the hypothesis in numerical simulations run on an aquaplanet general circulation model (GCM) and a coupled atmosphere–ocean GCM (AOGCM). The extratropical cloud-top height, wave driving, and lapse-rate tropopause all shift upward but remain at roughly the same temperature when the aquaplanet GCM is forced by uniform surface warming of +4 K and when the AOGCM is forced by RCP8.5 scenario emissions. “Locking” simulations run on the aquaplanet GCM further reveal that 1) holding the water vapor concentrations input into the radiation code fixed while increasing surface temperatures strongly constrains the rise in the extratropical tropopause, whereas 2) increasing the water vapor concentrations input into the radiation code while holding surface temperatures fixed leads to robust rises in the extratropical tropopause. Together, the results suggest that roughly invariant extratropical tropopause temperatures constitutes an additional “robust response” of the climate system to global warming.


2011 ◽  
Vol 68 (12) ◽  
pp. 3079-3093 ◽  
Author(s):  
Paul A. O’Gorman ◽  
Nicolas Lamquin ◽  
Tapio Schneider ◽  
Martin S. Singh

Abstract An idealized model of advection and condensation of water vapor is considered as a representation of processes influencing the humidity distribution along isentropic surfaces in the free troposphere. Results are presented for how the mean relative humidity distribution varies in response to changes in the distribution of saturation specific humidity and in the amplitude of a tropical moisture source. Changes in the tropical moisture source are found to have little effect on the relative humidity poleward of the subtropical minima, suggesting a lack of poleward influence despite much greater water vapor concentrations at lower latitudes. The subtropical minima in relative humidity are found to be located just equatorward of the inflection points of the saturation specific humidity profile along the isentropic surface. The degree of mean subsaturation is found to vary with the magnitude of the meridional gradient of saturation specific humidity when other parameters are held fixed. The atmospheric relevance of these results is investigated by comparison with the positions of the relative humidity minima in reanalysis data and by examining poleward influence of relative humidity in simulations with an idealized general circulation model. It is suggested that the limited poleward influence of relative humidity may constrain the propagation of errors in simulated humidity fields.


2012 ◽  
Vol 25 (8) ◽  
pp. 3010-3024 ◽  
Author(s):  
Peter L. Langen ◽  
Rune Grand Graversen ◽  
Thorsten Mauritsen

Abstract When climate is forced by a doubling of CO2, a number of feedback processes are induced, such as changes of water vapor, clouds, and surface albedo. Here the CO2 forcing and concomitant feedbacks are studied individually using a general circulation model coupled to an aquaplanet mixed layer ocean. A technique for fixing the radiative effects of moisture and clouds by reusing these variables from 1 × CO2 and 2 × CO2 equilibrium climates in the model’s radiation code allows for a detailed decomposition of forcings, feedbacks, and responses. The cloud feedback in this model is found to have a weak global average effect and surface albedo feedbacks have been eliminated. As in previous studies, the water vapor feedback is found to approximately double climate sensitivity, but while its radiative effect is strongly amplified at low latitudes, the resulting response displays about the same degree of polar amplification as the full all-feedbacks experiment. In fact, atmospheric energy transports are found to change in a way that yields the same meridional pattern of response as when the water vapor feedback is turned off. The authors conclude that while the water vapor feedback does not in itself lead to polar amplification by increasing the ratio of high- to low-latitude warming, it does double climate sensitivity both at low and high latitudes. A polar amplification induced by other feedbacks in the system, such as the Planck and lapse rate feedbacks here, is thus strengthened in the sense of increasing the difference in high- and low-latitude warming.


2009 ◽  
Vol 22 (23) ◽  
pp. 6404-6412 ◽  
Author(s):  
A. E. Dessler ◽  
S. Wong

Abstract The strength of the water vapor feedback has been estimated by analyzing the changes in tropospheric specific humidity during El Niño–Southern Oscillation (ENSO) cycles. This analysis is done in climate models driven by observed sea surface temperatures [Atmospheric Model Intercomparison Project (AMIP) runs], preindustrial runs of fully coupled climate models, and in two reanalysis products, the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) and the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA). The water vapor feedback during ENSO-driven climate variations in the AMIP models ranges from 1.9 to 3.7 W m−2 K−1, in the control runs it ranges from 1.4 to 3.9 W m−2 K−1, and in the ERA-40 and MERRA it is 3.7 and 4.7 W m−2 K−1, respectively. Taken as a group, these values are higher than previous estimates of the water vapor feedback in response to century-long global warming. Also examined is the reason for the large spread in the ENSO-driven water vapor feedback among the models and between the models and the reanalyses. The models and the reanalyses show a consistent relationship between the variations in the tropical surface temperature over an ENSO cycle and the radiative response to the associated changes in specific humidity. However, the feedback is defined as the ratio of the radiative response to the change in the global average temperature. Differences in extratropical temperatures will, therefore, lead to different inferred feedbacks, and this is the root cause of spread in feedbacks observed here. This is also the likely reason that the feedback inferred from ENSO is larger than for long-term global warming.


2021 ◽  
Author(s):  
Daichi Takabatake ◽  
Masaru Inatsu

Abstract We analyzed a large ensemble dataset called the database for Policy Decision Making for Future climate change (d4PDF), which contains 60-km resolution atmospheric general circulation model output and 20-km resolution dynamical downscaling for the Japanese domain. The increase in moisture and precipitation, and their global warming response in June–July–August were described focusing on the differences between Hokkaido and Kyushu. The results suggested that the specific humidity increased almost following the Clausius Clapeyron relation, but the change in stationary circulation suppressed the precipitation increase, except for in western Kyushu. The + 4 K climate in Hokkaido would be as hot and humid as the present climate in Kyushu. The circulation change related to the southward shift of the jet stream and an eastward shift of the Bonin high weakened the moisture flux convergence via a stationary field over central Japan including eastern Kyushu. The transient eddy activity counteracted the increase in humidity, so that the moisture flux convergence and precipitation did not change much over Hokkaido. Because the contribution of tropical cyclones to the total precipitation was at most 10%, the decrease in the number of tropical cyclones did not explain the predicted change in precipitation.


2019 ◽  
Author(s):  
Camille Risi ◽  
Joseph Galewsky ◽  
Gilles Reverdin ◽  
Florent Brient

Abstract. Understanding what controls the water vapor isotopic composition of the sub-cloud layer (SCL) over tropical oceans (δD0) is a first step towards understanding the water vapor isotopic composition everywhere in the troposphere. We propose an analytical model to predict δD0 as a function of sea surface conditions, humidity and temperature profiles, and the altitude from which the free tropospheric air originates (zorig). To do so, we extend previous studies by (1) prescribing the shape of δD0 vertical profiles, and (2) linking δD0 to zorig. The model relies on the hypotheses that δD0 profiles are steeper than mixing lines and no clouds are precipitating. We show that δD0 does not depend on the intensity of entrainment, dampening hope that δD0 measurements could help constrain this long-searched quantity. Based on an isotope-enabled general circulation model simulation, we show that δD0 variations are mainly controlled by mid-tropospheric depletion and rain evaporation in ascending regions, and by sea surface temperature and zorig in subsiding regions. When the air mixing into the SCL is lower in altitude, it is moister, and thus it depletes more efficiently the SCL. In turn, could δD0 measurements help estimate zorig and thus discriminate between different mixing processes? Estimates that are accurate enough to be useful would be difficult to achieve in practice, requiring measuring daily δD profiles, and measuring δD0 with an accuracy of 0.1 ‰ and 0.4 ‰ in trade-wind cumulus and strato-cumulus clouds respectively.


1999 ◽  
Vol 12 (1) ◽  
pp. 273-288 ◽  
Author(s):  
Thomas M. Smith ◽  
Robert E. Livezey

Abstract Specifications of 1- and 3-month mean Pacific–North America region 700-hPa heights and U.S. surface temperatures and precipitation, from global sea surface temperatures (SSTs) and the ensemble average output of multiple runs of a general circulation model with the same SSTs prescribed, were explored with canonical correlation analysis. In addition to considerable specification skill, the authors found that 1) systematic errors in SST-forced model variability had substantial linear parts, 2) use of both predictor fields usually enhanced specification performance for the U.S. fields over that for just one of the predictor fields, and 3) skillful specification and model correction of the heights and temperatures were also possible for nonactive or transitional El Niño–Southern Oscillation situations.


2012 ◽  
Vol 25 (16) ◽  
pp. 5587-5599 ◽  
Author(s):  
Evan Weller ◽  
Ming Feng ◽  
Harry Hendon ◽  
Jian Ma ◽  
Shang-Ping Xie ◽  
...  

Abstract Off the Western Australia coast, interannual variations of wind regime during the austral winter and spring are significantly correlated with the Indian Ocean dipole (IOD) and the southern annular mode (SAM) variability. Atmospheric general circulation model experiments forced by an idealized IOD sea surface temperature anomaly field suggest that the IOD-generated deep atmospheric convection anomalies trigger a Rossby wave train in the upper troposphere that propagates into the southern extratropics and induces positive geopotential height anomalies over southern Australia, independent of the SAM. The positive geopotential height anomalies extended from the upper troposphere to the surface, south of the Australian continent, resulting in easterly wind anomalies off the Western Australia coast and a reduction of the high-frequency synoptic storm events that deliver the majority of southwest Australia rainfall during austral winter and spring. In the marine environment, the wind anomalies and reduction of storm events may hamper the western rock lobster recruitment process.


2006 ◽  
Vol 19 (9) ◽  
pp. 1652-1672 ◽  
Author(s):  
Mike Bauer ◽  
Anthony D. Del Genio

Abstract The role of midlatitude baroclinic cyclones in maintaining the extratropical winter distribution of water vapor in an operational global climate model is investigated. A cyclone identification and tracking algorithm is used to compare the frequency of occurrence, propagation characteristics, and composite structure of 10 winters of storms in the Goddard Institute for Space Studies general circulation model (GCM) and in two reanalysis products. Cyclones are the major dynamical source of water vapor over the extratropical oceans in the reanalyses. The GCM produces fewer, generally weaker, and slower-moving cyclones than the reanalyses and is especially deficient in storms associated with secondary cyclogenesis. Composite fields show that GCM cyclones are shallower and drier aloft than those in the reanalyses and that their vertical structure is less tilted in the frontal region because of the GCM’s weaker ageostrophic circulation. This is consistent with the GCM’s underprediction of midlatitude cirrus. The GCM deficiencies do not appear to be primarily due to parameterization errors; the model is too dry despite producing less storm precipitation than is present in the reanalyses and in an experimental satellite precipitation dataset, and the weakness and shallow structure of GCM cyclones is already present at storm onset. These shortcomings may be common to most climate GCMs that do not resolve the mesoscale structure of frontal zones, and this may account for some universal problems in climate GCM midlatitude cloud properties.


Sign in / Sign up

Export Citation Format

Share Document