scholarly journals Forecasting Lightning Threat Using Cloud-Resolving Model Simulations

2009 ◽  
Vol 24 (3) ◽  
pp. 709-729 ◽  
Author(s):  
Eugene W. McCaul ◽  
Steven J. Goodman ◽  
Katherine M. LaCasse ◽  
Daniel J. Cecil

Abstract Two new approaches are proposed and developed for making time- and space-dependent, quantitative short-term forecasts of lightning threats, and a blend of these approaches is devised that capitalizes on the strengths of each. The new methods are distinctive in that they are based entirely on the ice-phase hydrometeor fields generated by regional cloud-resolving numerical simulations, such as those produced by the Weather Research and Forecasting (WRF) model. These methods are justified by established observational evidence linking aspects of the precipitating ice hydrometeor fields to total flash rates. The methods are straightforward and easy to implement, and offer an effective near-term alternative to the incorporation of complex and costly cloud electrification schemes into numerical models. One method is based on upward fluxes of precipitating ice hydrometeors in the mixed-phase region at the −15°C level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domain-wide statistics of the peak values of simulated flash-rate proxy fields against domain-wide peak total lightning flash-rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. The blended solution proposed in this work is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Simulations of selected diverse North Alabama cases show that the WRF can distinguish the general character of most convective events, and that the methods employed herein show promise as a means of generating quantitatively realistic fields of lightning threat. However, because the models tend to have more difficulty in predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single simulations can be in error. Although these model shortcomings presently limit the precision of lightning threat forecasts from individual runs of current generation models, the techniques proposed herein should continue to be applicable as newer and more accurate physically based model versions, physical parameterizations, initialization techniques, and ensembles of forecasts become available.

2020 ◽  
Vol 35 (4) ◽  
pp. 1545-1560 ◽  
Author(s):  
Eugene W. McCaul ◽  
Georgios Priftis ◽  
Jonathan L. Case ◽  
Themis Chronis ◽  
Patrick N. Gatlin ◽  
...  

AbstractThe Lightning Forecasting Algorithm (LFA), a simple empirical procedure that transforms kinematic and microphysical fields from explicit-convection numerical models into mapped fields of estimated total lightning flash origin density, has been incorporated into operational forecast models in recent years. While several changes designed to improve LFA accuracy and reliability have been implemented, the basic linear relationship between model proxy amplitudes and diagnosed total lightning flash rate densities remains unchanged. The LFA has also been added to many models configured with microphysics and boundary layer parameterizations different from those used in the original study, suggesting the need for checks of the LFA calibration factors. To assist users, quantitative comparisons of LFA output for some commonly used model physics choices are performed. Results are reported here from a 12-member ensemble that combines four microphysics with three boundary layer schemes, to provide insight into the extent of LFA output variability. Data from spring 2018 in Nepal–Bangladesh–India show that across the ensemble of forecasts in the entire three-month period, the LFA peak flash rate densities all fell within a factor of 1.21 of well-calibrated LFA-equipped codes, with most schemes failing to show differences that are statistically significant. Sensitivities of threat areal coverage are, however, larger, suggesting substantial variation in the amounts of ice species produced in storm anvils by the various microphysics schemes. Current explicit-convection operational models in the United States employ schemes that are among those exhibiting the larger biases. For users seeking optimum performance, we present recommended methods for recalibrating the LFA.


2021 ◽  
Author(s):  
Guido Schröder

<p>A modified lightning potential index (MLPI) for numerical models with parameterized deep convection is presented. It is based on the LPI formula of Lynn and Yair (2010). Following the idea of Lopez (2016), the quantities (e.g. vertical velocity) needed in the LPI formula are derived from the updraft of the Bechtold-Tiedtke parameterization scheme (Bechtold et al., 2014). The formula is further improved by taking into account the vertical equivalent potential temperature gradient.</p><p>The LPI and MLPI are tested in ICON with 20km resolution (ICON-20) over central Europe. A key component in the LPI is the vertical velocity. To assess its quality, the vertical velocity of the updraft in the convection scheme in ICON-20 is compared to updrafts in the convection-resolving COSMO model with 2.2 km resolution (COSMO-D2). It is shown that in ICON-20 the extension of the vertical velocity is generally broader with the maximum located in higher altitudes. In the charge separation area where the vertical velocity is relevant, the ICON-20 vertical velocity is less than in COSMO-D2. Consequently, the LPI values in ICON-20 are lower by a factor of 2 compared to COSMO-D2.</p><p>The MLPI is verified against LINET lightning data (Betz et al. 2009) over central Europe for summer 2020 and compared to LPI in COSMO-D2. The MLPI is also compared to the LPI and the lightning flash density (LFD,  Lopez, 2016), all computed in ICON-20. For the test period the MLPI outperforms the LPI and LFD. However, the quality of the LPI in COSMO-D2 cannot quite be reached.</p><p> </p><p>Bechtold et al. 2014: Representing Equilibrium and Nonequilibrium Convection in Large-Scale Models. J. Atmos. Sci. 71, 734-753.</p><p>Betz et al., 2009:  LINET - An international lightning detection network in Europe. Atmos.  Res. 91 564–573.</p><p>Lopez, 2016: A Lightning Parameterization for the ECMWF Integrated Forecasting System. Mon. Wea. Rev., 144, 3057-2075.</p><p>Lynn and Yair, 2010: Prediction of lightning flash density with the WRF model  Adv. Geosci., 23, 11–16.</p>


2012 ◽  
Vol 5 (4) ◽  
pp. 3493-3531 ◽  
Author(s):  
J. Wong ◽  
M. C. Barth ◽  
D. Noone

Abstract. The Price and Rind lightning parameterization based on cloud-top height is a commonly used method for predicting flash rate in global chemistry models. As mesoscale simulations begin to implement flash rate predictions at resolutions that partially resolve convection, it is necessary to validate and understand the behavior of this method within such regime. In this study, we tested the flash rate parameterization, intra-cloud/cloud-to-ground (IC:CG) partitioning parameterization, and the associated resolution dependency "calibration factor" by Price and Rind using the Weather Research and Forecasting (WRF) model running at 36 km, 12 km, and 4 km grid spacings within the continental United States. Our results show that while the integrated flash count is consistent with observation when model biases in convection are taken into account, an erroneous frequency distribution is simulated. When the spectral characteristics of lightning flash rate is a concern, we recommend the use of prescribed IC:CG values. In addition, using cloud-top from convective parameterization, the "calibration factor" is also shown to be insufficient in reconciling the resolution dependency at the tested grid spacing used in this study. We recommend scaling by areal ratio relative to a base-case grid spacing determined by convective core density.


2013 ◽  
Vol 6 (2) ◽  
pp. 429-443 ◽  
Author(s):  
J. Wong ◽  
M. C. Barth ◽  
D. Noone

Abstract. The Price and Rind lightning parameterization based on cloud-top height is a commonly used method for predicting flash rate in global chemistry models. As mesoscale simulations begin to implement flash rate predictions at resolutions that partially resolve convection, it is necessary to validate and understand the behavior of this method within such a regime. In this study, we tested the flash rate parameterization, intra-cloud/cloud-to-ground (IC:CG) partitioning parameterization, and the associated resolution dependency "calibration factor" by Price and Rind using the Weather Research and Forecasting (WRF) model running at 36 km, 12 km, and 4 km grid spacings within the continental United States. Our results show that while the integrated flash count is consistent with observations when model biases in convection are taken into account, an erroneous frequency distribution is simulated. When the spectral characteristics of lightning flash rate are a concern, we recommend the use of prescribed IC:CG values. In addition, using cloud-top from convective parameterization, the "calibration factor" is also shown to be insufficient in reconciling the resolution dependency at the tested grid spacing used in this study. We recommend scaling by areal ratio relative to a base-case grid spacing determined by convective core density.


2021 ◽  
Author(s):  
Xiaocheng Liu ◽  
Chenming Zhang ◽  
Yue Liu ◽  
David Lockington ◽  
Ling Li

<p>Estimation of evaporation rates from soils is significant for environmental, hydrological, and agricultural purposes. Modeling of the soil surface resistance is essential to estimate the evaporation rates from bare soil. Empirical surface resistance models may cause large deviations when applied to different soils. A physically-based soil surface model is developed to calculate the surface resistance, which can consider evaporation on the soil surface when soil is fully saturated and the vapor flow below the soil surface after dry layer forming on the top. Furthermore, this physically-based expression of the surface resistance is added into a numerical model that considers the liquid water transport, water vapor transport, and heat transport during evaporation. The simulation results are in good agreement with the results from six soil column drying experiments.  This numerical model can be applied to predict or estimate the evaporation rate of different soil and saturation at different depths during evaporation.</p>


2018 ◽  
Vol 75 (8) ◽  
pp. 2721-2740 ◽  
Author(s):  
Christopher G. Kruse ◽  
Ronald B. Smith

AbstractMountain waves (MWs) are generated during episodic cross-barrier flow over broad-spectrum terrain. However, most MW drag parameterizations neglect transient, broad-spectrum dynamics. Here, the influences of these dynamics on both nondissipative and dissipative momentum deposition by MW events are quantified in a 2D, horizontally periodic idealized framework. The influences of the MW spectrum, vertical wind shear, and forcing duration are investigated. MW events are studied using three numerical models—the nonlinear, transient WRF Model; a linear, quasi-transient Fourier-ray model; and an optimally tuned Lindzen-type saturation parameterization—allowing quantification of total, nondissipative, and dissipative MW-induced decelerations, respectively. Additionally, a pseudomomentum diagnostic is used to estimate nondissipative decelerations within the WRF solutions. For broad-spectrum MWs, vertical dispersion controls spectrum evolution aloft. Short MWs propagate upward quickly and break first at the highest altitudes. Subsequently, the arrival of additional longer MWs allows breaking at lower altitudes because of their greater contribution to u variance. As a result, minimum breaking levels descend with time and event duration. In zero- and positive-shear environments, this descent is not smooth but proceeds downward in steps as a result of vertically recurring steepening levels. Nondissipative decelerations are nonnegligible and influence an MW’s approach to breaking, but breaking and dissipative decelerations quickly develop and dominate the subsequent evolution. Comparison of the three model solutions suggests that the conventional instant propagation and monochromatic parameterization assumptions lead to too much MW drag at too low an altitude.


2014 ◽  
Vol 142 (12) ◽  
pp. 4850-4871 ◽  
Author(s):  
Max R. Marchand ◽  
Henry E. Fuelberg

Abstract This study presents a new method for assimilating lightning data into numerical models that is suitable at convection-permitting scales. The authors utilized data from the Earth Networks Total Lightning Network at 9-km grid spacing to mimic the resolution of the Geostationary Lightning Mapper (GLM) that will be on the Geostationary Operational Environmental Satellite-R (GOES-R). The assimilation procedure utilizes the numerical Weather Research and Forecasting (WRF) Model. The method (denoted MU) warms the most unstable low levels of the atmosphere at locations where lightning was observed but deep convection was not simulated based on the absence of graupel. Simulation results are compared with those from a control simulation and a simulation employing the lightning assimilation method developed by Fierro et al. (denoted FO) that increases water vapor according to a nudging function that depends on the observed flash rate and simulated graupel mixing ratio. Results are presented for three severe storm days during 2011 and compared with hourly NCEP stage-IV precipitation observations. Compared to control simulations, both the MU and FO assimilation methods produce improved simulated precipitation fields during the assimilation period and a short time afterward based on subjective comparisons and objective statistical scores (~0.1, or 50%, improvement of equitable threat scores). The MU generally performs better at simulating isolated thunderstorms and other weakly forced deep convection, while FO performs better for the case having strong synoptic forcing. Results show that the newly developed MU method is a viable alternative to the FO method, exhibiting utility in producing thunderstorms where observed, and providing improved analyses at low computational cost.


2021 ◽  
Author(s):  
Gert-Jan Steeneveld ◽  
Roosmarijn Knol

<p>Fog is a critical weather phenomenon for safety and operations in aviation. Unfortunately, the forecasting of radiation fog remains challenging due to the numerous physical processes that play a role and their complex interactions, in addition to the vertical and horizontal resolution of the numerical models. In this study we evaluate the performance of the Weather Research and Forecasting (WRF) model for a radiation fog event at Schiphol Amsterdam Airport (The Netherlands) and further develop the model towards a 100 m grid spacing. Hence we introduce high resolution land use and land elevation data. In addition we study the role of gravitational droplet settling, advection of TKE, top-down diffusion caused by strong radiative cooling at the fog top. Finally the impact of heat released by the terminal areas on the fog formation is studied. The model outcomes are evaluated against 1-min weather observations near multiple runways at the airport.</p><p>Overall we find the WRF model shows an reasonable timing of the fog onset and is well able to reproduce the visibility and meteorological conditions as observed during the case study. The model appears to be relatively insensitive to the activation of the individual physical processes. An increased spatial resolution to 100 m generally results in a better timing of the fog onset differences up to three hours, though not for all runways. The effect of the refined landuse dominates over the effect of refined elevation data. The modelled fog dissipation systematically occurs 3-4 h hours too early, regardless of physical processes or spatial resolution. Finally, the introduction of heat from terminal buildings delays the fog onset with a maximum of two hours, an overestimated visibility of 100-200 m and a decrease of the LWC with 0.10-0.15 g/kg compared to the reference.</p>


2021 ◽  
pp. 112-122
Author(s):  
A.A. SIN'KEVICH ◽  
◽  
B. BOE ◽  
S. PAWAR ◽  
YU. P. MIKHAILOVSKII ◽  
...  

Characteristics of developing convective clouds (Cu) in Karnataka state (India) during the thunderstorm formation are analyzed using weather radar and lightning detection network data. It is noted that radar characteristics of Cu which produced lightning, exceed those where lightning does not form. The study has shown that the number of negative cloud-to-ground strokes exceeds the number of positive ones by an order of magnitude. The radar characteristics of clouds in India and the North Caucasus are compared. Significant differences in lightning flash rates over the mentioned regions are registered. A low correlation is found between the supercooled volume and the flash rate of negative lightning. The paper also presents the results of studying the dynamic characteristics of four Cu seeded with a glaciogenic reagent. The thunderstorm risk is estimated for the clouds. It is shown that the seeding increases a probability of lightning events.


Author(s):  
Camille Strozzi ◽  
Moez Ben Houidi ◽  
Julien Sotton ◽  
Marc Bellenoue

The canonical diesel spray A is characterized in an optical Rapid Compression Machine (RCM) at high temperature and density conditions (900 K and 850 K, ρ = 23 kg/m3) using simultaneous high-speed OH* chemiluminescence and two-pulse 355 nm Planar Laser Induced Fluorescence (PLIF). The focus is on the time evolution and the repeatability of the early stages of both cool flame and hot ignition phenomena, and on the time evolution of the fluorescing formaldehyde region in between. In particular, time resolved data related to the cool flame are provided. They show the development of several separated kernels on the spray sides at the onset of formaldehyde appearance. Shortly after this phase, the cool flame region expands at high velocity around the kernels and further downstream towards the richer region at the spray head, reaching finally most of the vapor phase region. The position of the first high temperature kernels and their growth are then characterized, with emphasis on the statistics of their location. These time-resolved data are new and they provide further insights into the dynamics of the spray A ignition. They bring some elements on the underlying mechanisms, which will be useful for the validation and improvement of numerical models devoted to diesel spray ignition.


Sign in / Sign up

Export Citation Format

Share Document