Bayesian Changepoint Analysis for Extreme Events (Typhoons, Heavy Rainfall, and Heat Waves): An RJMCMC Approach

2010 ◽  
Vol 23 (5) ◽  
pp. 1034-1046 ◽  
Author(s):  
Xin Zhao ◽  
Pao-Shin Chu

Abstract A hierarchical Bayesian framework is developed to identify multiple abrupt regime shifts in an extreme event series. Specifically, extreme events are modeled as a Poisson process with a gamma-distributed rate. Multiple candidate hypotheses are considered, under each of which there presumably exist a certain number of abrupt shifts of the rate. A Bayesian network involving three layers—data, parameter, and hypothesis—is formulated. A reversible jump Markov chain Monte Carlo (RJMCMC) algorithm is developed to calculate posterior probability for each hypothesis as well its associated within-hypothesis parameters. Based on the proposed RJMCMC algorithm, a simulated example is designed to illustrate the effectiveness of the method. Subsequently, the algorithm is applied to three real, rare event time series: the annual typhoon counts over the western North Pacific (WNP), the annual extreme heavy rainfall event counts at the Honolulu airport, and the annual heat wave frequency in the Chicago area. Results indicate that the typhoon activity over the WNP is very likely to have undergone a decadal variation, with two change points occurring around 1972 and 1989 characterized by the active 1960–71 epoch, the inactive 1972–88 epoch, and the moderately active 1989–2006 epoch. For the extreme rainfall case, only one shift around 1970 is found and heavy rainfall frequency has remained stationary since then. There is no evidence that the rate of the annual heat wave counts in the Chicago area has had any abrupt change during the past 50 years.

2011 ◽  
Vol 11 (9) ◽  
pp. 2463-2468 ◽  
Author(s):  
Y. Tramblay ◽  
L. Neppel ◽  
J. Carreau

Abstract. In Mediterranean regions, climate studies indicate for the future a possible increase in the extreme rainfall events occurrence and intensity. To evaluate the future changes in the extreme event distribution, there is a need to provide non-stationary models taking into account the non-stationarity of climate. In this study, several climatic covariates are tested in a non-stationary peaks-over-threshold modeling approach for heavy rainfall events in Southern France. Results indicate that the introduction of climatic covariates could improve the statistical modeling of extreme events. In the case study, the frequency of southern synoptic circulation patterns is found to improve the occurrence process of extreme events modeled via a Poisson distribution, whereas for the magnitude of the events, the air temperature and sea level pressure appear as valid covariates for the Generalized Pareto distribution scale parameter. Covariates describing the humidity fluxes at monthly and seasonal time scales also provide significant model improvements for the occurrence and the magnitude of heavy rainfall events. With such models including climatic covariates, it becomes possible to asses the risk of extreme events given certain climatic conditions at monthly or seasonal timescales. The future changes in the heavy rainfall distribution can also be evaluated using covariates computed by climate models.


2014 ◽  
Vol 27 (9) ◽  
pp. 3169-3207 ◽  
Author(s):  
Siegfried D. Schubert ◽  
Hailan Wang ◽  
Randal D. Koster ◽  
Max J. Suarez ◽  
Pavel Ya. Groisman

Abstract This article reviews the understanding of the characteristics and causes of northern Eurasian summertime heat waves and droughts. Additional insights into the nature of temperature and precipitation variability in Eurasia on monthly to decadal time scales and into the causes and predictability of the most extreme events are gained from the latest generation of reanalyses and from supplemental simulations with the NASA Goddard Earth Observing System model, version 5 (GEOS-5). Key new results are 1) the identification of the important role of summertime stationary Rossby waves in the development of the leading patterns of monthly Eurasian surface temperature and precipitation variability (including the development of extreme events such as the 2010 Russian heat wave); 2) an assessment of the mean temperature and precipitation changes that have occurred over northern Eurasia in the last three decades and their connections to decadal variability and global trends in SST; and 3) the quantification (via a case study) of the predictability of the most extreme simulated heat wave/drought events, with some focus on the role of soil moisture in the development and maintenance of such events. A literature survey indicates a general consensus that the future holds an enhanced probability of heat waves across northern Eurasia, while there is less agreement regarding future drought, reflecting a greater uncertainty in soil moisture and precipitation projections. Substantial uncertainties remain in the understanding of heat waves and drought, including the nature of the interactions between the short-term atmospheric variability associated with such extremes and the longer-term variability and trends associated with soil moisture feedbacks, SST anomalies, and an overall warming world.


2020 ◽  
Author(s):  
Catherine de Burgh-Day ◽  
Debbie Hudson ◽  
Oscar Alves ◽  
Morwenna Griffiths ◽  
Andrew Marshall ◽  
...  

<p>Extreme events such as droughts, heat waves and floods can have significant and long lasting financial, infrastructural and environmental impacts. While probabilistic seasonal outlooks are commonplace, there are relatively few probabilistic outlooks available on multiweek timescales. Additionally, many services focus on the middle of the distribution of possible outcomes – e.g., forecasts of probability of above or below median, or probability of mean conditions exceeding some threshold. These do not encompass the types of extreme events that can be the most damaging, such as several consecutive days of extreme heat, unusually large numbers of cold days in a season, or an extended period where rainfall is in the lowest decile of historical years.</p><p>Advance warning of extreme events that impact particular industries enable managers to put in place response measures which can help to reduce their losses. This can involve:</p><ul><li>Active responses which aim to reduce the severity of the impact. For example, losses in dairy production due to extreme heat can be mitigated by adjusting grazing rotations such that cows are in shadier paddocks during these events</li> <li>Defensive responses which aim to account for any losses incurred due to an event. For example, the purchase of new farm equipment can be deferred if a forecast extreme event indicates a likely unavoidable financial loss in the near future</li> </ul><p>To meet this need, the Australian Bureau of Meteorology is developing a suite of forecast products communicating risk of extreme events using data from the Bureau’s new seasonal forecasting system ACCESS-S. Each prototype forecast product is trialed with external users through a webpage to assess usefulness and popularity.</p>


2021 ◽  
Author(s):  
Moses.A Ojara ◽  
Yunsheng Lou ◽  
Hasssen Babaousmail ◽  
Peter Wasswa

Abstract East African countries (Uganda, Kenya, Tanzania, Rwanda, and Burundi) are prone to weather extreme events. In this regard; the past occurrence of extreme rainfall events is analyzed for 25 stations following the Expert Team on Climate Change Detection and Indices (ETCCDI) regression method. Detrended Fluctuation Analysis (DFA) is used to show the future development of extreme events. Pearson’s correlation analysis is performed to show the relationship of extreme events between different rainfall zones and their association with El Niño -Southern Oscillation (ENSO and Indian Ocean dipole (IOD) IOD-DMI indices. Results revealed that the consecutive wet day's index (CWD) was decreasing trend in 72% of the stations analyzed, moreover consecutive dry days (CDD) index also indicated a positive trend in 44% of the stations analyzed. Heavy rainfall days index (R10mm) showed a positive trend at 52% of the stations and was statistically significant at a few stations. In light of the extremely heavy rainfall days (R25mm) index, 56% of the stations revealed a decreasing trend for the index and statistically significant trend at some stations. Further, a low correlation coefficient of extreme rainfall events in the regions; and between rainfall extreme indices with the atmospheric teleconnection indices (Dipole Mode Index-DMI and Nino 3.4) (r = -0.1 to r = 0.35). Most rainfall zones showed a positive correlation between the R95p index and DMI, while 5/8 of the rainfall zones experienced a negative correlation between Nino 3.4 index and the R95p. In light of the highly variable trends of extremes events, we recommend planning adaptation and mitigation measures that consider the occurrence of such high variability. Measures such as rainwater harvesting, stored and used during needs, planned settlement, and improved drainage systems management supported by accurate climate and weather forecasts is highly advised.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiayan Ren ◽  
Guohe Huang ◽  
Yongping Li ◽  
Xiong Zhou ◽  
Jinliang Xu ◽  
...  

A heat wave is an important meteorological extreme event related to global warming, but little is known about the characteristics of future heat waves in Guangdong. Therefore, a stepwise-clustered simulation approach driven by multiple global climate models (i.e., GCMs) is developed for projecting future heat waves over Guangdong under two representative concentration pathways (RCPs). The temporal-spatial variations of four indicators (i.e., intensity, total intensity, frequency, and the longest duration) of projected heat waves, as well as the potential changes in daily maximum temperature (i.e., Tmax) for future (i.e., 2006–2095) and historical (i.e., 1976–2005) periods, were analyzed over Guangdong. The results indicated that Guangdong would endure a notable increasing annual trend in the projected Tmax (i.e., 0.016–0.03°C per year under RCP4.5 and 0.027–0.057°C per year under RCP8.5). Evaluations of the multiple GCMs and their ensemble suggested that the developed approach performed well, and the model ensemble was superior to any single GCM in capturing the features of heat waves. The spatial patterns and interannual trends displayed that Guangdong would undergo serious heat waves in the future. The variations of intensity, total intensity, frequency, and the longest duration of heat wave are likely to exceed 5.4°C per event, 24°C, 25 days, and 4 days in the 2080s under RCP8.5, respectively. Higher variation of those would concentrate in eastern and southwestern Guangdong. It also presented that severe heat waves with stronger intensity, higher frequency, and longer duration would have significant increasing tendencies over all Guangdong, which are expected to increase at a rate of 0.14, 0.83, and 0.21% per year under RCP8.5, respectively. Over 60% of Guangdong would suffer the moderate variation of heat waves to the end of this century under RCP8.5. The findings can provide decision makers with useful information to help mitigate the potential impacts of heat waves on pivotal regions as well as ecosystems that are sensitive to extreme temperature.


Author(s):  
Rene Orth ◽  
Sungmin O ◽  
Jakob Zscheischler ◽  
Miguel D. Mahecha ◽  
Markus Reichstein

Abstract Extreme hydrological and meteorological conditions can severely affect ecosystems, parts of the economy, and consequently society. These impacts are expected to be aggravated by climate change. Here we analyze and compare the impacts of multiple types of extreme events across several domains in Europe, to reveal corresponding impact signatures. We characterize the distinct impacts of droughts, floods, heat waves, frosts and storms on a variety of biophysical and social variables at national level and half-monthly time scale. We find strong biophysical impacts of droughts, floods, heat waves and frosts, while public attention and property damage are more affected by storms and floods. We show unexpected impact patterns such as reduced human mortality during floods and storms. Comparing public attention anomalies with impacts across all other considered domains we find that attention on droughts is comparatively low despite the significant overall impacts. Resolving these impact patterns highlights large-scale vulnerability and supports regional extreme event management to consequently reduce disaster risks.


10.29007/wvth ◽  
2018 ◽  
Author(s):  
Biswa Bhattacharya ◽  
Chris Zevenbergen ◽  
Adele Young ◽  
Mohanasundar Radhakrishnan

Alexandria experienced heavy rainfall in October 2015 resulting in wide spread flooding, huge damages and seven deaths. This paper presents the analysis of the hydro- meteorological data to characterise the extremity of the event. The flood map of the city and its adjoining area prepared with LANDSAT-8 satellite images shows the extent of flooding. The analysis with the rainfall forecast from the ECMWF clearly demonstrated that the extreme event could have been predicted days ahead. It is proposed to implement Anticipatory Flood Management in Alexandria (AFMA), which will allow using the extreme rainfall forecast to start pumping out water from Lake Maryot and Airport Lake before the event starts. This will enable extra storage space to accommodate some of the flood water from subsequent rain. An analysis of the October flood showed that 50% of the flood water due to the heavy rainfall could have been stored in the lakes had the AFMA been implemented. The study shows that the existing data allows us to implement AFMA to reduce flood consequences and pave the way to critically decide upon additional mitigation infrastructure. The recommendation of this study is currently being implemented.


2021 ◽  
Author(s):  
Till Fohrmann ◽  
Andreas Hense ◽  
Petra Friederichs

<p>The research on heat waves is strongly motivated by their impacts on human<br />life and the economy. Consequently, less research has been done on the<br />state of the lower atmosphere as a whole during these extreme events,<br />although it may play a role in the formation and persistence of heat<br />waves. Miralles et al. (2014) show that different factors must come<br />together to produce extremes such as the pronounced heat waves<br />in the year 2003 in France and 2010 in Russia. One interesting phenomenon<br />in this context is the emergence of an unusually deep boundary layer. The aim<br />of this work is to analyse whether this feature is a common trait of European<br />heat waves in general. To this end, we systematically investigate the vertical<br />structure and evolution of the lower atmosphere during heat waves in the<br />time period from 2014 to 2018. COSMO-REA6 data is used to find heatwaves<br />and provides vertical profiles of the atmosphere which we also compare<br />to radio sonde measurements. The results of our work could possibly be<br />used to improve the discriminability of different severity levels of heat waves or to<br />formulate a heat wave measure that is not based solely on surface variables.</p>


2021 ◽  
Author(s):  
Claudio Bravo ◽  
Pablo Paredes ◽  
Nicolás Donoso ◽  
Sebastián Cisternas

<p>Subtropical Andean glaciers are losing mass in response to the long-term atmospheric warming and precipitation decrease. Extreme events as heat waves, however, seems to potentially play a key role in the sustained ice loss detected in the last decades. Increased frequency of heat wave events have been detected in the central valley of Chile, however, the occurrence and impact of these events on the Andean cryosphere remain unknown. The main reason is associated with the lack of meteorological observations at higher elevations in the Andes. </p><p>In filling this gap, we present an assessment of the occurrence of heat waves in the glacierized Río Olivares basin (33°S), which comprise an elevation range between ~1500  and ~6000 m a.s.l. and where a strong ice loss has been detected during the last decades. The main aim is to analyse the correspondence of heat waves events occurred with those in the nearby city of Santiago located in the central valley of Chile and to assess the potential impacts of these events on the glaciers located in this basin. Using meteorological observations in Río Olivares basin and in Santiago between the years 2013 and 2020, heat wave events were determined. We estimated the heat wave events using the monthly 90th percentile and the adjustment of a harmonic function. An additional adjustment relative to the climate period 1981-2010 was also introduced. The results determined 66 events in the Río Olivares basin while in Santiago were 53 events. These results reveal high spatial variability in the occurrences of heat waves as only 49% of the events in Santiago were detected in the Río Olivares basin. Ongoing work is focused on analysing the impacts of these events over the glaciers of the basin. Here, through the use of the computed basin-scale 0°C isotherm, the relation between glacier area under melt (i.e. glacier area located below the 0°C isotherm) and the heat wave events will be shown. The findings of this works reinforce the need for more observational efforts over high elevations in the Andes in order to robustly assess and at a basin scale, the impact of extreme events on the Andean cryosphere.</p>


2020 ◽  
Author(s):  
Uwe Ulbrich ◽  
Jens Grieger

<p>The ClimXtreme program funded by the German Ministry of Education and Research is designed to address Physics and Processes, Statistics, and Impacts of meteorological extreme events, considering both the past period covered by instrumental measurements, and future climate scenarios. In its branch on impacts, the impact of hazards in Europe (convective events, severe precipitation, heat waves and droughts, and large scale storms) shall be considered in order to identify the underlying relevant weather situations and the antecedent meteorological factors. The specific characteristics of the extreme events shall also be explored. Aiming at a better understanding of the impacts of the extremes, investigations shall go beyond quantification of the local severity of a hazard. The assumption is that there is also an influence of weather and climate on exposure and vulnerability. These factors for the occurrence and the magnitude of damaging impacts  thus depend on local climatology, the occurrence of specific weather sequences augmenting vulnerability, or the occurrence of specific combinations of factors which individually needn’t be extreme (compound events).  One starting point are thus already existing impact models, which do not take (all of) these factors into account. Results from numerical climate models will be used to estimate the future change of risks under climate change.</p>


Sign in / Sign up

Export Citation Format

Share Document