scholarly journals A Method to Linearly Evaluate Rainfall Frequency–Intensity Distribution

2014 ◽  
Vol 53 (4) ◽  
pp. 928-934 ◽  
Author(s):  
Jian Li ◽  
Rucong Yu

AbstractThis study presents a method to linearly evaluate the rainfall frequency–intensity distribution, which is an important component of climatological rainfall characteristics. To grasp and represent the key information of the rainfall frequency distribution by intensity, a two-parameter double exponential function is formulated and fitted to the hourly rainfall observation at each station. The values of the two parameters are estimated by transforming the distribution to a linear pattern. The two parameters determine the location and shape of the fitted distribution curve, and they have different modulating effects in different intensity categories, one governing the low-intensity section and the other dominating the intense rainfall. Through analysis of the estimated parameters, essential features of rainfall distribution can be obtained and assessed. The proposed method is applied to analyze the climatology and long-term variation of the late-summer rainfall in China. It is found that topography and monsoon circulation are two major factors controlling the rainfall frequency–intensity distribution. At stations with high surface altitudes and complex orography, the frequency of light rain is extremely high and the number of intense rainfall events is relatively small. In the plain areas of eastern China, especially those influenced by the main monsoon rain belt, heavy rainfall is more frequent. By tracking the displacement of the parameter pairs, the decadal changes in rainfall frequency–intensity distribution can be clearly visualized and evaluated on a plane constructed by the two parameters. The southern flooding and northern drought pattern can be attributed to the changes in light and moderate rainfall, while the intense rainfall exhibits opposite trends.

2019 ◽  
Vol 11 (17) ◽  
pp. 2004 ◽  
Author(s):  
Gang Chen ◽  
Kun Zhao ◽  
Long Wen ◽  
Mengyao Wang ◽  
Hao Huang ◽  
...  

Polarimetric radar and disdrometer observations obtained during the 2014 Observation, Prediction, and Analysis of Severe Convection of China (OPACC) field campaign are used in this study to investigate the microphysical characteristics of three primary types of organized intense rainfall events (meiyu rainband, typhoon outer rainband, and squall line) in eastern China. Drop size distributions (DSDs) of these three events on the ground are derived from measurements of a surface disdrometer, while the corresponding three-dimensional microphysical structures are obtained from the Nanjing University C-band polarimetric radar (NJU-CPOL). Although the environmental moisture and instability conditions are different, all three events possess relatively high freezing level favorable for warm-rain processes where the high medium to small raindrop concentration at low levels is consistent with the high surface rainfall rates. Convection is tallest in the squall line where abundant ice-phase processes generate large amounts of rimed particles (graupel and hail) above the freezing level and the largest surface raindrops are present among these three events. The storm tops of both the typhoon and meiyu rainbands are lower than that in the squall line, composed of less active ice processes above the freezing level. The typhoon rainrate is more intense than that of meiyu, enhanced by higher coalescence efficiency. A revised generalized intercept parameter versus mass-weighted mean diameter (Nw-Dm) space diagram is constructed to describe the DSD distributions over the three events and illustrate the relative DSD positions for heavy precipitation. DSDs of these intense rainfall convections observed in this midlatitude region of eastern Asia somewhat represent the typical DSD characteristics in low latitudes, suggesting that the parameterization of microphysical characteristics in eastern China in numerical models needs to be further investigated to improve rain fall forecasts in these heavy rainfall events.


2012 ◽  
Vol 25 (19) ◽  
pp. 6851-6861 ◽  
Author(s):  
Rucong Yu ◽  
Jian Li

Abstract In this study, late-summer rainfall over eastern contiguous China is classified according to hourly intensity and the changes of moderate, intense, and extreme precipitation in response to variation of surface air temperature are analyzed. The e-folding decay intensity (Imi) derived from the exponential distribution of rainfall amount is defined as the threshold that partitions rainfall into moderate and intense rainfall, and the double e-folding decay intensity (Ie) is used as the threshold to pick out extreme cases. The mean values of Imi and Ie are about 12 and 24 mm h−1, respectively. Between the two periods, 1966–85 and 1986–2005, the ratio between moderate and intense rainfall has experienced significant changes. And the spatial pattern of changes in the percentage of moderate rainfall presents a direct relation with that of the surface air temperature. Based on temperature changes, three regimes, regime N (north China), regime C (central eastern China), and regime S (southeastern coastal area of China), are defined. In warming regimes (regimes N and S), the percentage of moderate rainfall exhibits a decreasing trend. In regime C, where the temperature has fallen, the percentage of moderate rainfall increased prominently. In all three regimes there are significant negative (positive) correlations between the percentage of moderate (intense) rainfall and the temperature. The relation between the extreme rainfall and the surface air temperature is far more regionally dependent. With plenty of water supply and little change in relative humidity, the extreme rainfall increased in regime S. Although regime N also shows strong warming trends, there is no significant trend in extreme precipitation due to the lack of water vapor transportation.


2021 ◽  
Author(s):  
D.-G. J. M. Hougni ◽  
A. G. T. Schut ◽  
L. S. Woittiez ◽  
B. Vanlauwe ◽  
K. E. Giller

Abstract Aim Recycling of cocoa pod husks has potential to contribute to mineral nutrition of cocoa. Yet little is known of the nutrient content and nutrient release patterns from the husks. The potassium (K) rich husks are usually left in heaps in cocoa plantations in Africa. We aimed to understand and quantify release patterns of K and other nutrients from husks under varying rainfall regimes and assessed the effects of partial decomposition and inundation on nutrient leaching rates. Methods We incubated chunks of cocoa pod husks to assess decomposition rates and we measured nutrient leaching rates from two sets of husk chunks: one set was placed in tubes that were submitted to simulated scheduled rainfall events while the second set was continuously inundated in beakers. Results Decomposition of husks followed a second-order exponential curve (k: 0.09 day−1; ageing constant: 0.43). Nutrient losses recorded within 25 days were larger and more variable for K (33%) than for other macronutrients released in this order: Mg > Ca ≈ P > N (less than 15%). Potassium leaching was mainly driven by rainfall frequency (P < 0.05) and reinforced by intense rainfall, especially at lower frequency. Under water-saturated conditions, 11% of K was leached out within 48 h from fresh husks compared with 92% from partially decayed husks. Conclusion Some initial decomposition of cocoa pod husks is required to expose K to intense leaching. As decomposition progresses, abundant K losses are to be expected under frequent and/or intense rainfall events.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 322
Author(s):  
P. Dinca ◽  
B. Butoi ◽  
M. Lungu ◽  
C. Porosnicu ◽  
I. Jepu ◽  
...  

Autonomous smart natural ventilation systems (SVS) attached to the glass façade of living quarters and office buildings can help reducing the carbon footprint of city buildings in the future, especially during warm seasons and can represent an alternative to the conventional mechanical ventilation systems. The work performed in this manuscript focuses on the investigation of bacteria trapping and killing efficiency of stainless steel grids coated with a mixed layer of Cu-Ag. These grids are to be employed as decontamination filters for a smart natural ventilation prototype that we are currently building in our laboratory. The tested grids were coated with a mixed Cu-Ag layer using thermionic vacuum arc plasma processing technology. The fixed deposition geometry allowed the variation of Cu and Ag atomic concentration in coated layers as a function of substrate position in relation to plasma sources. The test conducted with air contaminated with a pathogen strain of staphylococcus aureus indicated that the filtering efficiency is influenced by two parameters: the pore size dimension and the coating layer composition. The results show that the highest filtering efficiency of 100% was obtained for fine pore (0.5 × 0.5 mm) grids coated with a mixed metallic layer composed of 65 at% Cu and 35 at% Ag. The second test performed only on reference grids and Cu-Ag (65–35 at%) under working conditions, confirm a similar filtering efficiency for the relevant microbiological markers. This particular sample was investigated from morphological, structural, and compositional point of view. The results show that the layer has a high surface roughness with good wear resistance and adhesion to the substrate. The depth profiles presented a uniform composition of Cu and Ag in the layer with small variations caused by changes in deposition rates during the coating process. Identification of the two metallic phases of the Cu and Ag in the layers evidences their crystalline nature. The calculated grain size of the nanocrystalline was in the range 14–21 nm.


2007 ◽  
Vol 20 (1) ◽  
pp. 91-112 ◽  
Author(s):  
Charlotte A. DeMott ◽  
David A. Randall ◽  
Marat Khairoutdinov

Abstract Precipitation variability is analyzed in two versions of the Community Atmospheric Model (CAM), the standard model, CAM, and a “multiscale modeling framework” (MMF), in which the cumulus parameterization has been replaced with a cloud-resolving model. Probability distribution functions (PDFs) of daily mean rainfall in three geographic locations [the Amazon Basin and western Pacific in December–February (DJF) and the North American Great Plains in June–August (JJA)] indicate that the CAM produces too much light–moderate rainfall (10 ∼ 20 mm day−1), and not enough heavy rainfall, compared to observations. The MMF underestimates rain contributions from the lightest rainfall rates but correctly simulates more intense rainfall events. These differences are not always apparent in seasonal mean rainfall totals. Analysis of 3–6-hourly rainfall and sounding data in the same locations reveals that the CAM produces moderately intense rainfall as soon as the boundary layer energizes. Precipitation is also concurrent with tropospheric relative humidity and lifted parcel buoyancy increases. In contrast, the MMF and observations are characterized by a lag of several hours between boundary layer energy buildup and precipitation, and a gradual increase in the depth of low-level relative humidity maximum prior to rainfall. The environmental entrainment rate selection in the CAM cumulus parameterization influences CAM precipitation timing and intensity, and may contribute to the midlevel dry bias in that model. The resulting low-intensity rainfall in the CAM leads to rainfall–canopy vegetation interactions that are different from those simulated by the MMF. The authors present evidence suggesting that this interaction may artificially inflate North American Great Plains summertime rainfall totals in the CAM.


2010 ◽  
Vol 23 (12) ◽  
pp. 3390-3396 ◽  
Author(s):  
Rucong Yu ◽  
Jian Li ◽  
Weihua Yuan ◽  
Haoming Chen

Abstract Using hourly station rain gauge data during 1966–2005, the authors studied changes in the characteristics of the late-summer (July–August) rainfall, which has exhibited a so-called southern flooding and northern drought (SFND) pattern over eastern China in recent decades. Although the rainfall amount and frequency have significantly increased (decreased) in the mid–lower reaches of the Yangtze River valley (North China) during this period, the rainfall intensity has decreased (increased). This finding differs from previous results based on daily data, which showed that the rainfall intensity has increased in the mid–lower reaches of the Yangtze River valley. In this region, the mean rainfall hours on rainy days have increased because of the prolonged rainfall duration, which has led to an increased daily rainfall amount and to a decreased hourly rainfall intensity. Results also show that the SFND pattern is mostly attributed to changes in precipitation with moderate and low intensity (≤10 mm h−1), which contributes 65% (96%) of rainfall amount to the “flooding” (“drought”) in the mid–lower reaches of the Yangtze River valley. Neither frequency nor amount of strong intensity (&gt;20 mm h−1) rainfall exhibits the SFND pattern.


2017 ◽  
Vol 17 (18) ◽  
pp. 11637-11654 ◽  
Author(s):  
Suvarna Fadnavis ◽  
Gayatry Kalita ◽  
K. Ravi Kumar ◽  
Blaž Gasparini ◽  
Jui-Lin Frank Li

Abstract. Recent satellite observations show efficient vertical transport of Asian pollutants from the surface to the upper-level anticyclone by deep monsoon convection. In this paper, we examine the transport of carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), into the monsoon anticyclone using of ECHAM6-HAM, a global aerosol climate model. Further, we investigate impacts of enhanced (doubled) carbonaceous aerosol emissions on the upper troposphere and lower stratosphere (UTLS), underneath monsoon circulation and precipitation from sensitivity simulations. The model simulation shows that boundary layer aerosols are transported into the monsoon anticyclone by the strong monsoon convection from the Bay of Bengal, southern slopes of the Himalayas and the South China Sea. Doubling of emissions of both BC and OC aerosols over Southeast Asia (10° S–50° N, 65–155° E) shows that lofted aerosols produce significant warming (0.6–1 K) over the Tibetan Plateau (TP) near 400–200 hPa and instability in the middle/upper troposphere. These aerosols enhance radiative heating rates (0.02–0.03 K day−1) near the tropopause. The enhanced carbonaceous aerosols alter aerosol radiative forcing (RF) at the surface by −4.74 ± 1.42 W m−2, at the top of the atmosphere (TOA) by +0.37 ± 0.26 W m−2 and in the atmosphere by +5.11 ± 0.83 W m−2 over the TP and Indo-Gangetic Plain region (15–35° N, 80–110° E). Atmospheric warming increases vertical velocities and thereby cloud ice in the upper troposphere. Aerosol induced anomalous warming over the TP facilitates the relative strengthening of the monsoon Hadley circulation and increases moisture inflow by strengthening the cross-equatorial monsoon jet. This increases precipitation amounts over India (1–4 mm day−1) and eastern China (0.2–2 mm day−1). These results are significant at the 99 % confidence level.


2015 ◽  
Vol 28 (21) ◽  
pp. 8450-8465 ◽  
Author(s):  
Hyo-Seok Park ◽  
Benjamin R. Lintner ◽  
William R. Boos ◽  
Kyong-Hwan Seo

Abstract The strengthening of monsoonal southerlies over East Asia is associated with the westward intensification of the North Pacific subtropical high. Previous work has shown that the seasonal-mean position and strength of subtropical highs are affected by tropical and subtropical diabatic heating. Here it is shown that the synoptic-time-scale strengthening of southerlies over eastern China is dynamically tied to extratropical eddy activity. Composite analysis based on strong southerly wind events highlights an antecedent baroclinic wave train propagating southeastward into eastern China from extratropical central Asia. This wave train generates quasigeostrophic ascent over eastern China that is associated with heavy precipitation. The anomalously cold upper-tropospheric conditions associated with the wave train decrease static stability throughout the lower and middle troposphere in eastern China, while low-level moistening enhances equivalent potential temperature. It is proposed that the resulting reductions in dry and moist static stability intensify the eddy-induced precipitating ascent. These results illustrate how East Asian monsoon circulation and precipitation can be enhanced by the interaction of midlatitude baroclinic waves with the moist subtropical monsoon region.


2019 ◽  
Vol 19 (18) ◽  
pp. 12051-12066 ◽  
Author(s):  
Lei Liu ◽  
Xiuying Zhang ◽  
Anthony Y. H. Wong ◽  
Wen Xu ◽  
Xuejun Liu ◽  
...  

Abstract. Ammonia (NH3), as an alkaline gas in the atmosphere, can cause direct or indirect effects on the air quality, soil acidification, climate change and human health. Estimating surface NH3 concentrations is critically important for modeling the dry deposition of NH3 and for modeling the formation of ammonium nitrate, which have important impacts on the natural environment. However, sparse monitoring sites make it challenging and difficult to understand the global distribution of surface NH3 concentrations in both time and space. We estimated the global surface NH3 concentrations for the years of 2008–2016 using satellite NH3 retrievals combining vertical profiles from GEOS-Chem. The accuracy assessment indicates that the satellite-based approach has achieved a high predictive power for annual surface NH3 concentrations compared with the measurements of all sites in China, the US and Europe (R2=0.76 and RMSE = 1.50 µg N m−3). The satellite-derived surface NH3 concentrations had higher consistency with the ground-based measurements in China (R2=0.71 and RMSE = 2.6 µg N m−3) than the US (R2=0.45 and RMSE = 0.76 µg N m−3) and Europe (R2=0.45 and RMSE = 0.86 µg N m−3) at a yearly scale. Annual surface NH3 concentrations higher than 6 µg N m−3 are mainly concentrated in the North China Plain of China and northern India, followed by 2–6 µg N m−3 mainly in southern and northeastern China, India, western Europe, and the eastern United States (US). High surface NH3 concentrations were found in the croplands in China, the US and Europe, and surface NH3 concentrations in the croplands in China were approximately double those in the croplands in the US and Europe. The linear trend analysis shows that an increase rate of surface NH3 concentrations (> 0.2 µg N m−3 yr−1) appeared in eastern China during 2008–2016, and a middle increase rate (0.1–0.2 µg N m−3 yr−1) occurred in northern Xinjiang over China. NH3 increase was also found in agricultural regions in the central and eastern US with an annual increase rate of lower than 0.10 µg N m−3 yr−1. The satellite-derived surface NH3 concentrations help us to determine the NH3 pollution status in the areas without monitoring sites and to estimate the dry deposition of NH3 in the future.


2018 ◽  
Vol 13 (2) ◽  
pp. 025013 ◽  
Author(s):  
Kaiyu Guan ◽  
Stephen P Good ◽  
Kelly K Caylor ◽  
David Medvigy ◽  
Ming Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document