scholarly journals The Cause of Internal Outflow Surges in a High-Resolution Simulation of the 8 May 2003 Oklahoma City Tornadic Supercell

2015 ◽  
Vol 73 (1) ◽  
pp. 353-370 ◽  
Author(s):  
Alexander D. Schenkman ◽  
Ming Xue ◽  
Daniel T. Dawson II

Abstract A high-resolution simulation of the 8 May 2003 Oklahoma tornadic supercell is analyzed to determine the origin of internal outflow surges within the low-level cold pool. The analyzed simulation has 50-m horizontal grid spacing and is quadruply nested within larger, lower-resolution domains that were initialized via three-dimensional variational data assimilation (3DVAR) of radar and other observations. The high-resolution simulation produces two tornadoes that track in close proximity to the observed tornado on 8 May 2003. The authors’ previous study determined that an internal outflow surge instigated tornadogenesis for the first tornado in this simulation but the cause of this internal outflow surge was unclear. In this study, the vertical momentum equation is analyzed along backward trajectories that are initialized within the tornado-triggering internal outflow surge. The analysis reveals that the internal outflow surge is forced by the dynamic part of the vertical pressure gradient. Further examination reveals that the dynamic forcing is the result of a high pressure perturbation in an area of stagnating flow on the west and northwest sides of the low-level (below ~3 km AGL) mesocyclone. This region of high perturbation pressure is unsteady and forces several other warm internal outflow surges on the west side of the tornado. Cold internal outflow surges also occur later in the simulation and are shown to be buoyantly forced by evaporation and water loading in heavy precipitation.

2012 ◽  
Vol 140 (10) ◽  
pp. 3300-3326 ◽  
Author(s):  
Xiaoming Sun ◽  
Ana P. Barros

Abstract The influence of large-scale forcing on the high-resolution simulation of Tropical Storm Ivan (2004) in the southern Appalachians was investigated using the Weather Research and Forecasting model (WRF). Two forcing datasets were employed: the North American Regional Reanalysis (NARR; 32 km × 32 km) and the NCEP Final Operational Global Analysis (NCEP FNL; 1° × 1°). Simulated fields were evaluated against rain gauge, radar, and satellite data; sounding observations; and the best track from the National Hurricane Center (NHC). Overall, the NCEP FNL forced simulation (WRF_FNL) captures storm structure and evolution more accurately than the NARR forced simulation (WRF_NARR), benefiting from the hurricane initialization scheme in the NCEP FNL. Further, the performance of WRF_NARR is also negatively affected by a previously documented low-level warm bias in NARR. These factors lead to excessive precipitation in the Piedmont region, delayed rainfall in Alabama, as well as spatially displaced and unrealistically extreme rainbands during its passage over the southern Appalachians. Spatial filtering of the simulated precipitation fields confirms that the storm characteristics inherited from the forcing are critical to capture the storm’s impact at local places. Compared with the NHC observations, the storm is weaker in both NARR and NCEP FNL (up to Δp ~ 5 hPa), yet it is persistently deeper in all WRF simulations forced by either dataset. The surface wind fields are largely overestimated. This is attributed to the underestimation of surface roughness length over land, leading to underestimation of surface drag, reducing low-level convergence, and weakening the dissipation of the simulated cyclone.


2010 ◽  
Vol 67 (1) ◽  
pp. 84-96 ◽  
Author(s):  
Masahiro Sawada ◽  
Toshiki Iwasaki

Abstract In this study, the impacts of evaporative cooling from raindrops on a tropical cyclone (TC) are examined using cloud-resolving simulations under an idealized condition. Part I of this study showed that evaporative cooling greatly increases the kinetic energy of a TC and its size because rainbands provide a large amount of condensation heating outside the eyewall. Part II investigates characteristics of simulated rainbands in detail. Rainbands are actively formed, even outside the eyewall, in the experiment including evaporative cooling, whereas they are absent in the experiment without evaporative cooling. Rainbands propagate in the counterclockwise and radially outward direction, and such behaviors are closely related to cold pools. New convective cells are successively generated at the upstream end of a cold pool, which is referred to here as the upstream development. The upstream development organizes spiral-shaped rainbands along a low-level streamline that is azimuthally averaged and propagates them radially outward. Asymmetric flows from azimuthally averaged low-level wind advance cold pool fronts in the normal direction to rainbands, which are referred to here as cross-band propagation. The cross-band propagation deflects the movement of each cell away from the low-level streamlines and rotates it in the counterclockwise direction. Cross-band propagation plays an essential role in the maintenance of rainbands. Advancement of cold pool fronts lifts up the warm and moist air mass slantwise and induces heavy precipitation. Evaporative cooling from raindrops induces downdrafts and gives feedback to the enhancement of cold pools.


2014 ◽  
Vol 71 (5) ◽  
pp. 1747-1762 ◽  
Author(s):  
Mario Marcello Miglietta ◽  
Richard Rotunno

Abstract In two recent papers, the authors performed numerical simulations with a three-dimensional, explicitly cloud-resolving model for a uniform wind flowing past a bell-shaped ridge and using an idealized unstable (Weisman–Klemp) sounding with prescribed values of the relevant parameters. More recently, some observed cases of orographically forced wind profiles were analyzed, showing that, in order to reproduce larger rainfall rates, it was necessary to initialize the sounding with low-level flow toward the mountain with weak flow aloft (as observed). Additional experiments using the Weisman–Klemp sounding, but with nonuniform wind profiles, are performed here to identify the conditions in which the presence of a low-level cross-mountain flow together with calm flow aloft may increase the rain rates in conditionally unstable flows over the orography. The sensitivity of the solutions to the wind speed at the bottom and the top of a shear layer and the effect of different mountain widths and heights are systematically analyzed herein. Large rainfall rates are obtained when the cold pool, caused by the evaporative cooling of rain from precipitating convective clouds, remains quasi stationary upstream of the mountain peak. This condition occurs when the cold-pool propagation is approximately countered by the environmental wind. The large precipitation amounts can be attributed to weak upper-level flow, which favors stronger updrafts and upright convective cells, and to the ground-relative stationarity of the cells. This solution feature is produced with ambient wind shear within a narrow region of the parameter space explored here and does not occur in the numerical solutions obtained in the authors’ previous studies with uniform wind profiles.


2014 ◽  
Vol 142 (9) ◽  
pp. 3038-3060 ◽  
Author(s):  
Harald Richter ◽  
Justin Peter ◽  
Scott Collis

During the late afternoon on 16 November 2008 the Brisbane (Queensland, Australia) suburb of “The Gap” experienced extensive wind damage caused by an intense local thunderstorm. The CP2 research radar nearby detected near-surface radial velocities exceeding 43 m s−1 above The Gap while hail size reports did not exceed golf ball size, and no tornadoes were reported. The storm environment was characterized by a layer of very moist near-surface air and strong storm-relative low-level flow, whereas the storm-relative winds aloft were weak. While the thermodynamic storm environment contained a range of downdraft-promoting ingredients such as a ~4-km-high melting level above a ~2-km-deep layer with nearly dry-adiabatic lapse rates mostly collocated with dry ambient air, a ~1-km-deep stable layer near the ground would generally lower expectations of destructive surface winds based on the downburst mechanism. Once observed reflectivities exceed 70 dBZ, downdraft cooling due to hail melting and downdraft acceleration based on hail loading are found to likely become nonnegligible forcing mechanisms. The event featured the close proximity of a hydrostatically and dynamically driven mesohigh at the base of the downdraft to a dynamically driven mesolow associated with a low-level circulation. This proximity was instrumental in the anisotropic horizontal acceleration of the near-ground outflow and the ultimate strength of the Gap storm surface winds. Weak storm-relative midlevel winds are speculated to have allowed the downdraft to descend close to the low-level circulation, which set up this strong horizontal perturbation pressure gradient.


Author(s):  
Andrew R. Wade ◽  
Matthew D. Parker

AbstractHigh-shear low-CAPE environments prevalent in the southeastern U.S. account for a large fraction of tornadoes and pose challenges for operational meteorologists. Yet, existing knowledge of supercell dynamics, particularly in the context of cloud-resolving modeling, is dominated by moderate- to high-CAPE environments typical of the Great Plains. This study applies high-resolution modeling to clarify the behavior of supercells in the more poorly understood low-CAPE environments, and compares them to a benchmark simulation in a higher-CAPE environment. Simulated low-CAPE supercells’ main updrafts do not approach the theoretical equilibrium level; their largest vertical velocities result not from buoyancy, but from dynamic accelerations associated with low-level mesocyclones and vortices. Surprisingly, low-CAPE tornado-like vortex parcels also sometimes stop ascending near the vortex top instead of carrying large vorticity upward into the midlevel updraft, contributing to vortex shallowness. Each of these low-CAPE behaviors is attributed to dynamic perturbation pressure gradient accelerations that are maximized in low levels, which predominate when the buoyancy is small.


2021 ◽  
Author(s):  
Maximo Garcia-Jove ◽  
Baptiste Mourre ◽  
Nikolaos Zarokanellos ◽  
Pierre F. J. Lermusiaux ◽  
Daniel L. Rudnick ◽  
...  

<p>Vertical velocities associated with meso- and submeso-scale structures generate important vertical fluxes of carbon and other biogeochemical tracers from the surface layer to depths below the mixed layer. Vertical velocities are very weak and characterized by small scales which make them difficult to measure. The project entitled Coherent Lagrangian Pathways from the Surface Ocean to Interior (CALYPSO, Office of Naval Research initiative) addresses the challenge of observing, understanding, and predicting the vertical velocities and three-dimensional pathways on subduction processes in the frontal regions of the Alboran Sea. Within the framework of the CALYPSO project, we analysed the processes that give rise to vertical velocities in the Western Alboran Gyre Front (WAGF) and Eastern Alboran Gyre Front (EAGF). The periods of frontal intensification were analyzed in the perspective of the frontogenesis, instabilities, non-linear Ekman effects, and filamentogenesis using multi-platform in-situ observations and a high-resolution simulation in spring 2018. The spatio-temporal characteristics of the WAGF indicate a wider, deeper, and longer-lasting front than the EAGF. The WAGF intensification and vertical velocities development are explained through i) frontogenesis, ii) conditions for symmetric and ageostrophic baroclinic instabilities generation, and iii) nonlinear Ekman effects. These mechanisms participate to generate and strengthen an ageostrophic secondary circulation responsible for vertical velocities intensification in the front. In the case of the EAGF, the intensification and vertical velocities development are explained by filamentogenesis in both the model and glider observations. The EAGF intensification is characterized by a sharp and outcropping density gradient at the center of the filament, where two asymmetrical ageostrophic cells develop across the front with narrow upwelling region in the middle.</p>


2012 ◽  
Vol 69 (3) ◽  
pp. 969-987 ◽  
Author(s):  
David G. Lerach ◽  
William R. Cotton

Abstract Four three-dimensional, nested-grid numerical simulations were performed using the Regional Atmospheric Modeling System (RAMS) to compare the effects of aerosols acting as cloud condensation nuclei (CCN) to those of low-level moisture [and thus convective available potential energy (CAPE)] on cold-pool evolution and tornadogenesis within an idealized supercell storm. The innermost grid possessed horizontal grid spacing of 111 m. The initial background profiles of CCN concentration and water vapor mixing ratio varied among the simulations (clean versus dusty and higher-moisture versus lower-moisture simulations). A fifth simulation was performed to factor out the impact of CAPE. The higher-moisture simulations produced spatially larger storms with stronger peak updrafts and low-level downdrafts, heavier precipitation, greater evaporative cooling, and stronger cold pools within the forward and rear flank downdrafts. Each simulated supercell produced a tornado-like vortex. However, the lower-moisture simulations produced stronger, longer-lived vortices, as they were associated with weaker cold pools and less negative buoyancy within the rear flank downdraft. Raindrop and hailstone concentrations (sizes) were reduced (increased) in the dusty simulations, resulting in less evaporative cooling and weaker cold pools compared to the clean simulations. With greater terminal fall speeds, the larger hydrometeors in the dusty simulations fell nearer to the storm’s core, positioning the cold pool closer to the main updraft. Tornadogenesis was related to the size, strength, and location of the cold pools produced by the forward and rear flank downdrafts. Not surprisingly, while the aerosol effect was evident, the influences of low-level moisture and CAPE had markedly larger impacts on tornadogenesis.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
Hirano T. ◽  
M. Yamaguchi ◽  
M. Hayashi ◽  
Y. Sekiguchi ◽  
A. Tanaka

A plasma polymerization film replica method is a new high resolution replica technique devised by Tanaka et al. in 1978. It has been developed for investigation of the three dimensional ultrastructure in biological or nonbiological specimens with the transmission electron microscope. This method is based on direct observation of the single-stage replica film, which was obtained by directly coating on the specimen surface. A plasma polymerization film was deposited by gaseous hydrocarbon monomer in a glow discharge.The present study further developed the freeze fracture method by means of a plasma polymerization film produces a three dimensional replica of chemically untreated cells and provides a clear evidence of fine structure of the yeast plasma membrane, especially the dynamic aspect of the structure of invagination (Figure 1).


Sign in / Sign up

Export Citation Format

Share Document