scholarly journals Note on Analyzing Perturbation Growth in a Tropical Cyclone–Like Vortex Radiating Inertia–Gravity Waves

2017 ◽  
Vol 74 (5) ◽  
pp. 1561-1571 ◽  
Author(s):  
David A. Schecter ◽  
Konstantinos Menelaou

Abstract A method is outlined for quantitatively assessing the impact of inertia–gravity wave radiation on the multimechanistic instability modes of a columnar stratified vortex that resembles an intense tropical cyclone. The method begins by decomposing the velocity field into one part that is formally associated with sources inside the vortex and another part that is attributed to radiation. The relative importance of radiation is assessed by comparing the rates at which the two partial velocity fields act to amplify the perturbation of an arbitrary tracer field—such as potential vorticity—inside the vortex. Further insight is gained by decomposing the formal vortex contribution to the amplification rate into subparts that are primarily associated with distinct vortex Rossby waves and critical-layer perturbations.

2016 ◽  
Vol 73 (9) ◽  
pp. 3345-3370 ◽  
Author(s):  
Konstantinos Menelaou ◽  
David A. Schecter ◽  
M. K. Yau

Abstract Intense atmospheric vortices such as tropical cyclones experience various asymmetric instabilities during their life cycles. This study investigates how vortex properties and ambient conditions determine the relative importance of different mechanisms that can simultaneously influence the growth of an asymmetric perturbation. The focus is on three-dimensional disturbances of barotropic vortices with nonmonotonic radial distributions of potential vorticity. The primary modes of instability are examined for Rossby numbers between 10 and 100 and Froude numbers in the broad neighborhood of unity. This parameter regime is deemed appropriate for tropical cyclone perturbations with vertical length scales ranging from the depth of the vortex to moderately smaller scales. At relatively small Froude numbers, the main cause of instability inferred from analysis typically involves the interaction of vortex Rossby waves with each other and/or critical-layer potential vorticity perturbations. As the Froude number increases from its lower bound, the main cause of instability transitions to inertia–gravity wave radiation. In some cases, the transition occurs abruptly at a critical point where a mode whose growth is driven almost entirely by radiation suddenly becomes dominant. In other cases, the transition is gradual and less direct as the fastest-growing mode continuously changes its structure. Examination of the angular pseudomomentum budget helps quantify the impact of radiation. The radiation-driven instabilities examined herein are shown to be quite fast and potentially relevant to real-world tropical cyclones. Their sensitivities to parameterized moisture and outer vorticity skirts are briefly addressed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Katy Tobin ◽  
Sinead Maguire ◽  
Bernie Corr ◽  
Charles Normand ◽  
Orla Hardiman ◽  
...  

Abstract Background Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative condition with a mean life expectancy of 3 years from first symptom. Understanding the factors that are important to both patients and their caregivers has the potential to enhance service delivery and engagement, and improve efficiency. The Discrete Choice Experiment (DCE) is a stated preferences method which asks service users to make trade-offs for various attributes of health services. This method is used to quantify preferences and shows the relative importance of the attributes in the experiment, to the service user. Methods A DCE with nine choice sets was developed to measure the preferences for health services of ALS patients and their caregivers and the relative importance of various aspects of care, such as timing of care, availability of services, and decision making. The DCE was presented to patients with ALS, and their caregivers, recruited from a national multidisciplinary clinic. A random effects probit model was applied to estimate the impact of each attribute on a participant’s choice. Results Patients demonstrated the strongest preferences about timing of receiving information about ALS. A strong preference was also placed on seeing the hospice care team later rather than early on in the illness. Patients also indicated their willingness to consider the use of communication devices. Grouping by stage of disease, patients who were in earlier stages of disease showed a strong preference for receipt of extensive information about ALS at the time of diagnosis. Caregivers showed a strong preference for engagement with healthcare professionals, an attribute that was not prioritised by patients. Conclusions The DCE method can be useful in uncovering priorities of patients and caregivers with ALS. Patients and caregivers have different priorities relating to health services and the provision of care in ALS, and patient preferences differ based on the stage and duration of their illness. Multidisciplinary teams must calibrate the delivery of care in the context of the differing expectations, needs and priorities of the patient/caregiver dyad.


2021 ◽  
Vol 13 (12) ◽  
pp. 6907
Author(s):  
Salomée Ruel ◽  
Anicia Jaegler

Zinn et al. (2018) and Esper et al. (2020) call for more research on gender diversity in Supply Chain Management, and our study responds to that call. We analyze the career path of 1081 international graduates from a higher degree program in Supply Chain Management from 2000 to 2017 to assess the impact of gender and expatriation choice on hierarchical progression. We explore two variables that may affect graduates’ career paths, namely, their gender and their expatriation choices, and compare their relative importance. Our analysis shows that there were, on average, 33.5% women recruited in the MSc and that this has not significantly changed over the years. It also shows that gender significantly influences the number of years spent at each level in the career hierarchy and the level reached. Regarding expatriation choice, this variable has some significant impacts on career progression. Finally, statistics indicate that gender has a far greater influence on career progression than expatriation choice. Overall, this study proves the difficulties for women in enjoying the same career progression as men in the field of Supply Chain Management.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 688
Author(s):  
Soline Bielli ◽  
Christelle Barthe ◽  
Olivier Bousquet ◽  
Pierre Tulet ◽  
Joris Pianezze

A set of numerical simulations is relied upon to evaluate the impact of air-sea interactions on the behaviour of tropical cyclone (TC) Bejisa (2014), using various configurations of the coupled ocean-atmosphere numerical system Meso-NH-NEMO. Uncoupled (SST constant) as well as 1D (use of a 1D ocean mixed layer) and 3D (full 3D ocean) coupled experiments are conducted to evaluate the impact of the oceanic response and dynamic processes, with emphasis on the simulated structure and intensity of TC Bejisa. Although the three experiments are shown to properly capture the track of the tropical cyclone, the intensity and the spatial distribution of the sea surface cooling show strong differences from one coupled experiment to another. In the 1D experiment, sea surface cooling (∼1 ∘C) is reduced by a factor 2 with respect to observations and appears restricted to the depth of the ocean mixed layer. Cooling is maximized along the right-hand side of the TC track, in apparent disagreement with satellite-derived sea surface temperature observations. In the 3D experiment, surface cooling of up to 2.5 ∘C is simulated along the left hand side of the TC track, which shows more consistency with observations both in terms of intensity and spatial structure. In-depth cooling is also shown to extend to a much deeper depth, with a secondary maximum of nearly 1.5 ∘C simulated near 250 m. With respect to the uncoupled experiment, heat fluxes are reduced from about 20% in both 1D and 3D coupling configurations. The tropical cyclone intensity in terms of occurrence of 10-m TC wind is globally reduced in both cases by about 10%. 3D-coupling tends to asymmetrize winds aloft with little impact on intensity but rather a modification of the secondary circulation, resulting in a slight change in structure.


2012 ◽  
Vol 69 (12) ◽  
pp. 3633-3651 ◽  
Author(s):  
Qingfang Jiang ◽  
Shouping Wang

Abstract The impact of gravity waves on marine stratocumulus is investigated using a large-eddy simulation model initialized with sounding profiles composited from the Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-Rex) aircraft measurements and forced by convergence or divergence that mimics mesoscale diurnal, semidiurnal, and quarter-diurnal waves. These simulations suggest that wave-induced vertical motion can dramatically modify the cloud albedo and morphology through nonlinear cloud–aerosol–precipitation–circulation–turbulence feedback. In general, wave-induced ascent tends to increase the liquid water path (LWP) and the cloud albedo. With a proper aerosol number concentration, the increase in the LWP leads to enhanced precipitation, which triggers or strengthens mesoscale circulations in the boundary layer and accelerates cloud cellularization. Precipitation also tends to create a decoupling structure by weakening the turbulence in the subcloud layer. Wave-induced descent decreases the cloud albedo by dissipating clouds and forcing a transition from overcast to scattered clouds or from closed to open cells. The overall effect of gravity waves on the cloud variability and morphology depends on the cloud property, aerosol concentration, and wave characteristics. In several simulations, a transition from closed to open cells occurs under the influence of gravity waves, implying that some of the pockets of clouds (POCs) observed over open oceans may be related to gravity wave activities.


2021 ◽  
Author(s):  
Niama Boukachaba ◽  
Oreste Reale ◽  
Erica L. McGrath-Spangler ◽  
Manisha Ganeshan ◽  
Will McCarty ◽  
...  

<p>Previous work by this team has demonstrated that assimilation of IR radiances in partially cloudy regions is beneficial to numerical weather predictions (NWPs), improving the representation of tropical cyclones (TCs) in global analyses and forecasts. The specific technique used by this team is based on the “cloud-clearing CC” methodology. Cloud-cleared hyperspectral IR radiances (CCRs), if thinned more aggressively than clear-sky radiances, have shown a strong impact on the analyzed representation and structure of TCs. However, the use of CCRs in an operational context is limited by 1) latency; and 2) external dependencies present in the original cloud-clearing algorithm. In this study, the Atmospheric InfraRed Sounder (AIRS) CC algorithm was (a) ported to NASA high end computing resources (HEC), (b) deprived of external dependencies, and (c) parallelized improving the processing by a factor of 70. The revised AIRS CC algorithm is now customizable, allowing user’s choice of channel selection, user’s model's fields as first guess, and could perform in real time. This study examines the benefits achieved when assimilating CCRs using the NASA’s Goddard Earth Observing System (GEOS) hybrid 4DEnVar system. The focus is on the 2017 Atlantic hurricane season with three infamous hurricanes (Harvey, Irma, and Maria) investigated in depth.  The impact of assimilating customized CCRs on the analyzed representation of tropical cyclone horizontal and vertical structure and on forecast skill is discussed.</p>


2007 ◽  
Vol 135 (4) ◽  
pp. 1195-1207 ◽  
Author(s):  
Timothy F. Hogan ◽  
Randal L. Pauley

Abstract The influence of convective momentum transport (CMT) on tropical cyclone (TC) track forecasts is examined in the Navy Operational Global Atmospheric Prediction System (NOGAPS) with the Emanuel cumulus parameterization. Data assimilation and medium-range forecast experiments show that for 35 tropical cyclones during August and September 2004 the inclusion of CMT in the cumulus parameterization significantly improves the TC track forecasts. The tests show that the track forecasts are very sensitive to the magnitude of the Emanuel parameterization’s convective momentum transport parameter, which controls the CMT tendency returned by the parameterization. While the overall effect of this formulation of CMT in NOGAPS data assimilation/medium-range forecasts results in the surface pressure of tropical cyclones being less intense (and more consistent with the analysis), the parameterization is not equivalent to a simple diffusion of winds in the presence of convection. This is demonstrated by two data assimilation/medium-range forecast tests in which a vertical diffusion algorithm replaces the CMT. Two additional data assimilation/medium-range forecast experiments were conducted to test whether the skill increase primarily comes from the CMT in the immediate vicinity of the tropical cyclones. The results show that the inclusion of the CMT calculation in the vicinity of the TC makes the largest contribution to the increase in forecast skill, but the general contribution of CMT away from the TC also plays an important role.


2007 ◽  
Vol 135 (12) ◽  
pp. 4006-4029 ◽  
Author(s):  
C. A. Reynolds ◽  
M. S. Peng ◽  
S. J. Majumdar ◽  
S. D. Aberson ◽  
C. H. Bishop ◽  
...  

Abstract Adaptive observing guidance products for Atlantic tropical cyclones are compared using composite techniques that allow one to quantitatively examine differences in the spatial structures of the guidance maps and relate these differences to the constraints and approximations of the respective techniques. The guidance maps are produced using the ensemble transform Kalman filter (ETKF) based on ensembles from the National Centers for Environmental Prediction and the European Centre for Medium-Range Weather Forecasts (ECMWF), and total-energy singular vectors (TESVs) produced by ECMWF and the Naval Research Laboratory. Systematic structural differences in the guidance products are linked to the fact that TESVs consider the dynamics of perturbation growth only, while the ETKF combines information on perturbation evolution with error statistics from an ensemble-based data assimilation scheme. The impact of constraining the SVs using different estimates of analysis error variance instead of a total-energy norm, in effect bringing the two methods closer together, is also assessed. When the targets are close to the storm, the TESV products are a maximum in an annulus around the storm, whereas the ETKF products are a maximum at the storm location itself. When the targets are remote from the storm, the TESVs almost always indicate targets northwest of the storm, whereas the ETKF targets are more scattered relative to the storm location and often occur over the northern North Atlantic. The ETKF guidance often coincides with locations in which the ensemble-based analysis error variance is large. As the TESV method is not designed to consider spatial differences in the likely analysis errors, it will produce targets over well-observed regions, such as the continental United States. Constraining the SV calculation using analysis error variance values from an operational 3D variational data assimilation system (with stationary, quasi-isotropic background error statistics) results in a modest modulation of the target areas away from the well-observed regions, and a modest reduction of perturbation growth. Constraining the SVs using the ETKF estimate of analysis error variance produces SV targets similar to ETKF targets and results in a significant reduction in perturbation growth, due to the highly localized nature of the analysis error variance estimates. These results illustrate the strong sensitivity of SVs to the norm (and to the analysis error variance estimate used to define it) and confirm that discrepancies between target areas computed using different methods reflect the mathematical and physical differences between the methods themselves.


Sign in / Sign up

Export Citation Format

Share Document