scholarly journals Relationships between Electrification and Storm-Scale Properties Based on Idealized Simulations of an Intensifying Hurricane-Like Vortex

2018 ◽  
Vol 75 (2) ◽  
pp. 657-674 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Edward R. Mansell

AbstractThis study investigates relationships between storm-scale properties and the electrification and lightning of two simulations of an intensifying idealized tropical cyclone (TC) using the cloud-resolving Collaborative Model for Multiscale Atmospheric Simulation (COMMAS). To produce an intensifying storm, an initial weak TC is subjected to a linear increase in sea surface temperature.As the TC intensifies, lightning flash rates increase in both the inner core (r ≤ 100 km) and outer region (100 < r ≤ 300 km). As time progresses, lightning in the outer region gradually decreases, while the inner-core lightning remains relatively steady. Bootstrapped correlation statistics using 1000 random samples between the pressure trace and time series of lightning rates shows a statistically significant negative correlation between inner-core lightning and TC intensification. Lightning rates in the outer bands were found to lag minimum surface pressure by 12 h.The increases in lightning in both the inner core and outer region coincided well with increases in 0.5 g kg−1 graupel and 5 m s−1 updraft volumes in each respective region. Correlation statistics with selected kinematic and microphysical variables known to be associated with lightning in thunderstorms, such as the ice water path, integrated updraft volume, and graupel volume, revealed that their increase in the inner core indicated an ongoing deepening, similar to the lightning. Trends in these proxy variables in the outer bands were also found to lag TC intensification by 12 h.Overall, the best linear relationships with lightning in either the inner core or the outer region were obtained with the 0.5 g kg−1 graupel volume and total graupel mass.

2018 ◽  
Vol 146 (6) ◽  
pp. 1641-1666 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Stephanie N. Stevenson ◽  
Robert M. Rabin

Total lightning data obtained from the Geostationary Lightning Mapper (GLM) were analyzed to present a first glimpse of relationships with intensity variations and convective evolution in Hurricane Maria (2017). The GLM has made it possible, for the first time, to analyze total lightning within a major hurricane for a long period, far from ground-based detection networks. It is hoped that these observations could enlighten some of the complex relationships existing between intensity fluctuations and the distribution of electrified convection in these systems. Prior to rapidly intensifying from a category 1 to category 5 storm, Maria produced few inner-core flashes. Increases in total lightning in the inner core ( r ≤ 100 km) occurred during both the beginning and end of an intensification cycle, while lightning increases in the outer region (100 < r ≤ 500 km) occurred earlier in the intensification cycle and during weakening. Throughout the analysis period, the largest lightning rates in the outer region were consistently located in the southeastern quadrant, a pattern consistent with modeling studies of electrification within hurricanes. Lightning in the inner core was generally tightly clustered within a 50-km radius from the center and most often found in the southeastern portion of the eyewall, which is atypical. Bootstrapped correlation statistics revealed that the most robust and systematic relationship with storm intensity was obtained for inner-core lightning and maximum surface wind speed. A brief comparison between flash rates from GLM and a very low-frequency ground-based network revealed that not all lightning peaks are seen equally, with hourly flash-rate ratios between both systems sometimes exceeding two orders of magnitude.


2014 ◽  
Vol 142 (8) ◽  
pp. 2838-2859 ◽  
Author(s):  
Buo-Fu Chen ◽  
Russell L. Elsberry ◽  
Cheng-Shang Lee

Abstract Outer mesoscale convective systems (OMCSs) are long-lasting, heavy rainfall events separate from the inner-core rainfall that have previously been shown to occur in 22% of western North Pacific tropical cyclones (TCs). Environmental conditions accompanying the development of 62 OMCSs are contrasted with the conditions in TCs that do not include an OMCS. The development, kinematic structure, and maintenance mechanisms of an OMCS that occurred to the southwest of Typhoon Fengshen (2008) are studied with Weather Research and Forecasting Model simulations. Quick Scatterometer (QuikSCAT) observations and the simulations indicate the low-level TC circulation was deflected around the Luzon terrain and caused an elongated, north–south moisture band to be displaced to the west such that the OMCS develops in the outer region of Fengshen rather than spiraling into the center. Strong northeasterly vertical wind shear contributed to frictional convergence in the boundary layer, and then the large moisture flux convergence in this moisture band led to the downstream development of the OMCS when the band interacted with the monsoon flow. As the OMCS developed in the region of low-level monsoon westerlies and midlevel northerlies associated with the outer circulation of Fengshen, the characteristic structure of a rear-fed inflow with a leading stratiform rain area in the cross-line direction (toward the south) was established. A cold pool (Δθ &lt; −3 K) associated with the large stratiform precipitation region led to continuous formation of new cells at the leading edge of the cold pool, which contributed to the long duration of the OMCS.


2006 ◽  
Vol 19 (13) ◽  
pp. 3180-3196 ◽  
Author(s):  
Walter A. Petersen ◽  
Rong Fu ◽  
Mingxuan Chen ◽  
Richard Blakeslee

Abstract This study focuses on modulation of lightning and convective vertical structure in the southern Amazon as a function of the South American monsoon V index (VI). Four wet seasons (December–March 1998–2001) of Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) and Precipitation Radar (PR) data are examined together with two wet seasons (2000–01) of ground-based Brazilian Lightning Detection Network (BLDN) data. These observations are composited by VI phase (northerly or southerly) for a region of the southern Amazon and discussed relative to VI-regime environmental characteristics such as thermodynamic instability and wind shear. Relative comparisons of VI-regime convective properties reveal 1) slightly larger (20%–25%) PR pixel-mean rainfall during periods of northerly VI due to increased stratiform precipitation, 2) a factor of 2 or more increase in lightning flash density and the lightning diurnal cycle amplitude during periods of southerly VI, 3) a factor of 1.5–2 increase in the conditional probability of any PR radar reflectivity pixel exceeding 30 dBZ above the −10°C level during periods of southerly VI, and 4) an associated factor of 2 or more increase in southerly VI pixel-mean ice water path, with the ice water path being highly correlated to trends in lightning activity. During periods of southerly VI, convection occurs in an environment of increased thermodynamic instability, weak southeasterly low-level, and deep upper-tropospheric easterly wind shear. During periods of northerly VI, low-level westerly shear opposes stronger deep tropospheric easterly shear in a relatively moist environment of weaker thermodynamic instability, consistent with the occurrence of more widespread stratiform precipitation. The composite results of this study point to 1) regime differences in convective forcing that alter the prevalence of ice processes and, by inference, the vertical profile of latent heating and 2) the utility of lightning observations in delineating convective regime changes.


2008 ◽  
Vol 2 (1) ◽  
pp. 261-270 ◽  
Author(s):  
Udaya Kumar ◽  
Rosy B. Raysaha ◽  
K.P. Dileep Kumar

The four most important factors that govern the return stroke evolution can be identified as: (i) electric field due to charge distributed along the channel, (ii) transient enhancement of conductance by several orders at the bridging regime (iii) the non-linear increase in channel conductance at the propagating current front and (iv) the associated dynamic electromagnetic field which support the evolution of current along the channel. For a more realistic modelling of the lightning return stroke, the present work attempts to consider these aspects in suitable manner. The charge simulation method is employed for evaluating the quasi-static field due to (i). For the dynamic field, the problem involves conduction along a thin structure with open boundary on one side. Further, in order to efficiently represent a vertically extended grounded strike object, as well as, channel of quite arbitrary geometry, boundary based approach is believed to be the ideal choice. Considering these, a time-dependent electric field integral equation (TD-EFIE) along with a sub-sectional collocation form of the method of moments (MoM) is chosen for the numerical field evaluation. The dynamic variation of conductance in the channel other than the bridging zone is modelled by a first order arc equation. For the bridging zone, arc equation which explicitly portray in some sense, accumulation of energy is considered. Accordingly, formulations given by Barannik, Popovic and Toepler were scrutinized for their suitability. After some preliminary simulation studies, a self contained model for the first return stoke of a lightning flash is presented. The stability of the model is verified by running the program for longer durations with different cloud base potentials and cloud base heights. Simulation results are in agreement with the field data on current and velocity decay rate for the first one kilometer height. Also, the relation between the charge density at channel tip and the return stroke current peak favorably compares with the literature.


2021 ◽  
pp. 1-12
Author(s):  
Kathrine N. Bretl ◽  
Torin K. Clark

BACKGROUND: The cross-coupled (CC) illusion and associated motion sickness limits the tolerability of fast-spin-rate centrifugation for artificial gravity implementation. Humans acclimate to the CC illusion through repeated exposure; however, substantial inter-individual differences in acclimation exist, which remain poorly understood. To address this, we investigated several potential predictors of individual acclimation to the CC illusion. METHODS: Eleven subjects were exposed to the CC illusion for up to 50 25-minute acclimation sessions. The metric of acclimation rate was calculated as the slope of each subject’s linear increase in spin rate across sessions. As potential predictors of acclimation rate, we gathered age, gender, demographics, and activity history, and measured subjects’ vestibular perceptual thresholds in the yaw, pitch, and roll rotation axes. RESULTS: We found a significant, negative correlation (p = 0.025) between subjects’ acclimation rate and roll threshold, suggesting lower thresholds yielded faster acclimation. Additionally, a leave-one-out cross-validation analysis indicated that roll thresholds are predictive of acclimation rates. Correlations between acclimation and other measures were not found but were difficult to assess within our sample. CONCLUSIONS: The ability to predict individual differences in CC illusion acclimation rate using roll thresholds is critical to optimizing acclimation training, improving the feasibility of fast-rotation, short-radius centrifugation for artificial gravity.


2011 ◽  
Vol 139 (1) ◽  
pp. 175-191 ◽  
Author(s):  
Sergio F. Abarca ◽  
Kristen L. Corbosiero ◽  
David Vollaro

Abstract Lightning flash density in tropical cyclones (TCs) is investigated to identify whether lightning flashes provide information on TC intensity and/or intensity change, to provide further insight into TC asymmetric convective structure induced by vertical shear and storm motion, and to assess how well the World Wide Lightning Location Network (WWLLN) is suited for the observation of TCs. The 24 Atlantic basin TCs that came within 400 km of the United States from 2004 to 2007 are studied. The National Lightning Detection Network is used to analyze flash density as a function of peak current and to evaluate the WWLLN. Flash density is shown to be smaller for hurricanes than for tropical depressions and storms, with this reduction being gradually more pronounced as flash peak current increases. The results suggest that flash density in the inner core is a parameter with potential for distinguishing intensifying versus nonintensifying TCs, particularly in the weaker storm stages where flash densities are largest. Vertical wind shear produces a strong downshear left (right) asymmetry in the inner core (outer rainbands), whereas motion asymmetries are less clear. The unprecedented azimuthal resolution used in this study suggests that as shear strengthens, the azimuthal region of convection in the inner core is sharpened from a width of ∼130° to a width of ∼60°. The radial distribution of flash density is shown to exhibit a relatively narrow region of little activity (between 60 and 120 km from the eye), with increased activity in both regions closer to, and more distant from, the center (i.e., the eyewall and outer rainbands, respectively). Finally, it is shown that the WWLLN captures the convective activity in Atlantic basin TCs remarkably well, despite its low detection efficiency.


2012 ◽  
Vol 140 (1) ◽  
pp. 77-99 ◽  
Author(s):  
Robert Rogers ◽  
Sylvie Lorsolo ◽  
Paul Reasor ◽  
John Gamache ◽  
Frank Marks

Abstract The multiscale inner-core structure of mature tropical cyclones is presented via the use of composites of airborne Doppler radar analyses. The structure of the axisymmetric vortex and the convective and turbulent-scale properties within this axisymmetric framework are shown to be consistent with many previous studies focusing on individual cases or using different airborne data sources. On the vortex scale, these structures include the primary and secondary circulations, eyewall slope, decay of the tangential wind with height, low-level inflow layer and region of enhanced outflow, radial variation of convective and stratiform reflectivity, eyewall vorticity and divergence fields, and rainband signatures in the radial wind, vertical velocity, vorticity, and divergence composite mean and variance fields. Statistics of convective-scale fields and how they vary as a function of proximity to the radius of maximum wind show that the inner eyewall edge is associated with stronger updrafts and higher reflectivity and vorticity in the mean and have broader distributions for these fields compared with the outer radii. In addition, the reflectivity shows a clear characteristic of stratiform precipitation in the outer radii and the vorticity distribution is much more positively skewed along the inner eyewall than it is in the outer radii. Composites of turbulent kinetic energy (TKE) show large values along the inner eyewall, in the hurricane boundary layer, and in a secondary region located at about 2–3 times the radius of maximum wind. This secondary peak in TKE is also consistent with a peak in divergence and in the variability of vorticity, and they suggest the presence of rainbands at this radial band.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Yousuke Sato ◽  
Yoshiaki Miyamoto ◽  
Hirofumi Tomita

Abstract The impacts of aerosols on the charge distribution of hydrometeors and lightning flash density in a tropical cyclone (TC) were investigated using a meteorological model coupled with an explicit lightning model. The meteorological model successfully simulated the tripole structure of charge density distribution in a TC, as reported by previous studies. The impacts of aerosols were investigated through a sensitivity experiment with changing the aerosol number concentration. The tripole structure became unclear with increasing aerosol number concentrations. The positive charge distribution located in the lower layer was not seen, and raindrops with negative charge distribution reached the surface. As a result, the vertical structure of the charge density was dipolar in the polluted case. As the tripole structure shifted to dipole, the magnitude of the electric field tended to be large, and the flash number was large. By contrast, in the pristine case, the tripole structure was dominant, and the flash number was much smaller than in the polluted case.


MAUSAM ◽  
2021 ◽  
Vol 43 (3) ◽  
pp. 259-268
Author(s):  
J.C. MANDAL

A model has been designed to study the surface boundary layer of a tropical storm. The numerical method consists of solving a two point boundary value problem for two systems of simultaneous non-linear differential equations by finite differences. A Stoke's stream function suitable to represent the flow both in interior and exterior regions of a tropical storm boundary layer has been developed. The advantage of the method is that the, boundary layer of the tropical storm can be studied starting from the outer region to the centre of the storm without neglecting non-linear terms. In addition, there IS no need for assumptions on the vertical profiles for tangential and radial velocities. The method is stable and converges within a few iterations. The flow above the friction layer is represented by a steady axisymmetric vortex in gradient balance. To investigate the effect of turbulence- on boundary layer characteristics, turbulence has been represented by four different variations of the eddy coefficient of viscosity with no slip boundary conditions. Computations have been performed 1aking 40-grid points in the vertical direction. It is observed that, if the eddy coefficient of viscosity is assumed to vary with the superimposed flow above the boundary layer, the solutions compare favourably well with observations. The solution also shows an outflow from the Inner core of the boundary layer which is necessary for creation of an eye of the storm.


2020 ◽  
Vol 148 (11) ◽  
pp. 4415-4434
Author(s):  
Shu-Jeng Lin ◽  
Kun-Hsuan Chou

AbstractThis study examines the characteristics of tropical cyclone (TC) lightning distribution and its relationship with TC intensity and environmental vertical wind shear (VWS) over the western North Pacific. It uses data from the World Wide Lightning Location Network and operational global analysis data from National Centers for Environmental Prediction Final Analysis for 230 TCs during 2005–17. The spatial distribution of TC lightning frequency and normalized lightning rate demonstrates that the VWS dominates the azimuthal distribution of the lightning. The flashes are active in the downshear-left side of the inner core and the downshear-right side of the outer region. TC lightning distribution for various VWS strengths and TC intensities are further investigated. As VWS increases, the flashes of lightning become more asymmetric and exhibit a higher proportion at the outer region of the downshear side. Moreover, the same features occur as TC intensity decreases. A series of composite analyses indicated that stronger TCs with weaker VWS exhibit a more compact and symmetric lightning distribution, whereas weaker TCs with stronger VWS have a more asymmetric lightning distribution. Furthermore, the TC lightning distribution and its association with TC intensity changes are also examined for three lead times. Results show that among the composite analyses of five TC intensity changes, the lightning distribution for rapid intensification type exhibits more inner-core lightning and is more axisymmetric than the distributions for other categories. These features result from favorable environmental conditions comprising greater upper-level divergence, sea surface temperature, maximum potential intensity, and weaker vertical wind shear.


Sign in / Sign up

Export Citation Format

Share Document