scholarly journals Numerical Simulation of Dust Lifting within Dust Devils—Simulation of an Intense Vortex

2006 ◽  
Vol 63 (10) ◽  
pp. 2630-2641 ◽  
Author(s):  
Zhaolin Gu ◽  
Yongzhi Zhao ◽  
Yun Li ◽  
Yongzhang Yu ◽  
Xiao Feng

Abstract Based on an advanced dust devil–scale large-eddy simulation (LES) model, the atmosphere flow of a modeled dust devil in a quasi–steady state was first simulated to illustrate the characteristics of the gas phase field in the mature stage, including the prediction of the lower pressure and higher temperature in the vortex core. The dust-lifting physics is examined in two aspects. Through the experimental data analysis, it is verified again that the horizontal swirling wind can only make solid particles saltate along the ground surface. Based on a Lagrangian reference frame, the tracks of dust grains with different density (material) and diameter are calculated to show the effect of dust particles entrained by the vertical swirling wind field. The movement of solid particles depends on the interactions between the aloft dust particles and the airflow field of dust devils, in which the drag and the centrifugal force component on the horizontal plane are the key force components. There is the trend of the fine dust grains rising along the inner helical tracks while the large dust grains are lifting along the outer helical tracks and then descending beyond the corner region, resulting in the impact between different-sized dust grains in the swirling atmospheric flow. This trend will make the dust stratification, developing a top small-sized grain domain and a bottom large-sized grain domain in dust devils.

2014 ◽  
Vol 71 (12) ◽  
pp. 4461-4472 ◽  
Author(s):  
Ralph D. Lorenz

Abstract A phenomenological model is developed wherein vortices are introduced at random into a virtual arena with specified distributions of diameter, core pressure drop, longevity, and translation speed, and the pressure history at a fixed station is generated using an analytic model of vortex structure. Only a subset of the vortices present are detected as temporary pressure drops, and the observed peak pressure-drop distribution has a shallower slope than the vortex-core pressure drops. Field studies indicate a detection rate of about two vortex events per day under favorable conditions for a threshold of 0.2 mb (1 mb = 1 hPa): this encounter rate and the observed falloff of events with increasing pressure drop can be reproduced in the model with approximately 300 vortices per square kilometer per day—rather more than the highest visual dust devil counts of approximately 100 devils per square kilometer per day. This difference can be reconciled if dust lifting typically only occurs in the field above a threshold core pressure drop of about 0.3 mb, consistent with observed laboratory pressure thresholds. The vortex population modeled to reproduce field results is concordant with recent high-resolution large-eddy simulations, which produce some thousands of 0.04–0.1-mb vortices per square kilometer per day, suggesting that these accurately reproduce the character of the strongly heated desert boundary layer. The amplitude and duration statistics of observed pressure drops suggest large dust devils may preferentially be associated with low winds.


2020 ◽  
Author(s):  
Sebastian Giersch ◽  
Siegfried Raasch

<p>Dust devils are convective vortices with a vertical axis of rotation mainly characterized by a local minimum in pressure and a local maximum in vertical vorticity within the vortex core. They are made visible by entrained dust particles. That's why they occur primarily in dry and hot areas. Currently, there is great uncertainty about the extent to which dust devils contribute to the atmospheric aerosol and heat transport and thereby influence earth's radiation budget as well as boundary layer properties. Past efforts to quantify the aerosol or heat transport and to study dust devils' formation, maintenance, and statistics using large-eddy simulation (LES) as well as direct numerical simulation (DNS) have been of limited success. Therefore, this study aims to provide better statistical information about dust devil-like structures and to extend, prove or disprove existing theories about the development and maintenance of dust devils. Especially, the vortex strength measured through the pressure drop in the vortex core is regarded, which is, in past LES simulations, almost one order of magnitude smaller compared to the observed range of several hundreds Pascals. <br>So far, we are able to reproduce observed core pressures with LES of the convective boundary layer by using a high spatial resolution of 2m while considering a domain of 4km x 4km x 2km, a model setup with moderate background wind and a spatially heterogeneous surface heat flux. It is found that vortices mainly appear at the vertices and branches of the cellular pattern and at lines of horizontal flow convergence above the centers of the strongly heated patches. The latter result is in contrast to some older observations in which vortices seemed to be created along the patch edges. Also further statistical properties, like lifetimes, diameters or frequency of occurrence, fit quite well in the observed range. Nevertheless, statistics of dust devils from LES face the general problem that they are highly influenced by the used grid spacing and thereby by the structures that can be explicitly resolved. For example, the near surface layer, which plays a major role for the vortex development, is poorly resolved and turbulent processes in this layer are highly parameterized. DNS would overcome this problem. Therefore, dust devil-like structures are also investigated with DNS by simulating laboratory-like Rayleigh-Bénard convection with Rayleigh numbers up to 10<sup>12</sup>. Such high Rayleigh numbers have never been used in DNS studies of dust devils. The focus is on the vortex formation dependence on the used Rayleigh number and aspect ratio. First results of the laboratory-like Rayleigh-Bénard convection simulated with DNS confirm the existence of dust devil-like structures also on small scales with much lower Rayleigh numbers than in the atmosphere. <br>In a next step, detailed statistics of dust devil-like structures in Rayleigh-Bénard convection will be derived focusing on Rayleigh number and aspect ratio dependencies. Afterwards, results will be compared to LES simulations of dust devils and experimental data.</p>


2021 ◽  
Author(s):  
Boris Ivanov

<p>We continue the analysis of HiRISE high resolution images of Mars to understand properties of dust covering the surface. The data on dust devils observed with Mars landers and surface traces of dust devils could be expanded with elongated albedo features imaged near “new” impact sites (“new” means that we have orbital images before and after the meteoroid impact, which give us an estimate of the impact date and the age of a feature). The age of these features is from 0.5 to 12 terrestrial years. From geometric reasons we could assume that the most possible mechanism of this elongated albedo details is the “footprint” of two or more colliding air shock waves, generated at the impact site. Of ~1200 “new” impacts known today, in 18 cases crater pairs or clusters, created with fragments of the same “parent” meteoroid, we recognize 24 thin “parabolas” with a width of 1 to 10 m (0.2 to 10 main crater diameters, <em>D</em>), extended to 100 – 400 m (3 to 100 <em>D</em>) from the impact site. In ~30 cases near a single crater we observe a curved albedo feature nick-named “scimitar”. These features have width, growing with a distance from the impact point. The length varies from 10 to 100 <em>D</em>, the width varies from 1 to 10 <em>D</em>. Our working hypothesis is that “scimitars” are footprints of ballistic and spherical air shock wave collision at the surface. Both “parabolas” and “scimitars” have an exact bilateral symmetry, which allows us to reconstruct the flight direction of projectiles.</p><p>We estimate the equivalent energy of spherical air blasts with two different assumptions for “parabolas” and “scimitars” formation. For parabolas we assume a mechanism, similar to dust devil track formation – the negative pressure excurse uplifts the upper fine dust layer. The main assumption is that the dark parabolic strip width corresponds the wave length of the negative pressure phase in the air shock wave. It gives us the minimum energy estimate as in reality the negative phase could be longer. The negative pressures here along the parabola length decay from about 10 to 5 Pa with the phase duration of a few milliseconds. Such a suction pulse is able to mobilize dust particles 50 to 100 microns in size.</p><p>For scimitars, which in contrast to “dark” parabolas are typically “brighter” than surrounding area, we have no a good mechanical explanation of origin. However, with limits of our current model, the spherical “explosion” air blast should be enough energetic, to overrun the ballistic shock wave. From non-linear motion of the shock wave front we can estimate the fraction of meteoroid’s kinetic energy, converted to the air blast energy. The model is able to reproduce approximately the scimitar’s curvature.</p>


2021 ◽  
Vol 346 ◽  
pp. 03070
Author(s):  
Rustem Ya. Bikkulov ◽  
Andrey V. Dmitriev ◽  
Vadim E. Zinurov ◽  
Guzel R. Badretdinova

Nowadays, at production facilities with paint-spraying booths that use paint and varnish materials to cover the surfaces of product, the problem of gas flow contamination with finely dispersed solid particles of dust and rubbish, which negatively affect the quality of products, is increasingly being raised. In order to minimize the content of solid particles in the gas flow, coarse and fine filters are installed in the paint-spraying booths, which prevent dust particles from entering the surface of products. However, the existing purification devices have a number of disadvantages that affect the efficiency of collecting finely dispersed particles from the gas flow with a size of 0.5-5 microns. The authors of article developed a square separator to increase the efficiency of collecting finely dispersed particles from gas flows in the paint-spraying booths. The installation of proposed separation device in the paint-spraying booths affects not only the quality of collecting solid particles, but also increases the service life of fine and coarse filters In the course of numerical studies, the results of impact of structural and technological parameters, namely, the impact of inlet rate and scale of separation device on the efficiency of collecting solid particles from the gas flow, were obtained.


2010 ◽  
Vol 77 (4) ◽  
pp. 529-536 ◽  
Author(s):  
M. S. SODHA ◽  
S. SRIVASTAVA ◽  
S. K. MISHRA

AbstractThis paper presents an analytical study of the impact of image force on the kinetics of an irradiated complex plasma. The formulation is based on the average charge theory and includes both the number and energy balance of electrons/ions along with the charge neutrality condition. The dependence of reduction in the potential energy surface barrier (and work function) on the number density of dust particles has been investigated and its impact on the charging of dust grains and other physical plasma parameters has been discussed. An interesting conclusion is the fact that the image force consideration leads to larger magnitude of negative charge on the dust particles and the effective work function approaches the value for plane surface with increasing size and number density of dust grains.


1985 ◽  
Vol 85 ◽  
pp. 223-226
Author(s):  
K. Weiss-Wrana ◽  
R.H. Giese ◽  
R.H. Zerull

AbstractThe investigations of light scattering by larger meteoritic and terrestrial single grains (size range 20 μm to 120 μm ) demonstrate that the scattering properties of irregularly shaped dark opaque particles with very rough surfaces resemble the characteristic features of the empirical scattering function as derived from measurements of the zodiacal light. Purely transparent or translucent irregularly shaped particles show a quite different scattering behaviour. Furthermore irregular and multicomponent fluffy particles in the size range of a few microns were modelled by microwave analog measurements in order to explain positive and negative polarization of the light scattered by cometary dust grains.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Mariola Jabłońska ◽  
Janusz Janeczek ◽  
Beata Smieja-Król

For the first time, it is shown that inhaled ambient air-dust particles settled in the human lower respiratory tract induce lung calcification. Chemical and mineral compositions of pulmonary calcium precipitates in the lung right lower-lobe (RLL) tissues of 12 individuals who lived in the Upper Silesia conurbation in Poland and who had died from causes not related to a lung disorder were determined by transmission and scanning electron microscopy. Whereas calcium salts in lungs are usually reported as phosphates, calcium salts precipitated in the studied RLL tissue were almost exclusively carbonates, specifically Mg-calcite and calcite. These constituted 37% of the 1652 mineral particles examined. Mg-calcite predominated in the submicrometer size range, with a MgCO3 content up to 50 mol %. Magnesium plays a significant role in lung mineralization, a fact so far overlooked. The calcium phosphate (hydroxyapatite) content in the studied RLL tissue was negligible. The predominance of carbonates is explained by the increased CO2 fugacity in the RLL. Carbonates enveloped inhaled mineral-dust particles, including uranium-bearing oxides, quartz, aluminosilicates, and metal sulfides. Three possible pathways for the carbonates precipitation on the dust particles are postulated: (1) precipitation of amorphous calcium carbonate (ACC), followed by its transformation to calcite; (2) precipitation of Mg-ACC, followed by its transformation to Mg-calcite; (3) precipitation of Mg-free ACC, causing a localized relative enrichment in Mg ions and subsequent heterogeneous nucleation and crystal growth of Mg-calcite. The actual number of inhaled dust particles may be significantly greater than was observed because of the masking effect of the carbonate coatings. There is no simple correlation between smoking habit and lung calcification.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 265
Author(s):  
Mihnea Cățeanu ◽  
Arcadie Ciubotaru

Laser scanning via LiDAR is a powerful technique for collecting data necessary for Digital Terrain Model (DTM) generation, even in densely forested areas. LiDAR observations located at the ground level can be separated from the initial point cloud and used as input for the generation of a Digital Terrain Model (DTM) via interpolation. This paper proposes a quantitative analysis of the accuracy of DTMs (and derived slope maps) obtained from LiDAR data and is focused on conditions common to most forestry activities (rough, steep terrain with forest cover). Three interpolation algorithms were tested: Inverse Distance Weighted (IDW), Natural Neighbour (NN) and Thin-Plate Spline (TPS). Research was mainly focused on the issue of point data density. To analyze its impact on the quality of ground surface modelling, the density of the filtered data set was artificially lowered (from 0.89 to 0.09 points/m2) by randomly removing point observations in 10% increments. This provides a comprehensive method of evaluating the impact of LiDAR ground point density on DTM accuracy. While the reduction of point density leads to a less accurate DTM in all cases (as expected), the exact pattern varies by algorithm. The accuracy of the LiDAR-derived DTMs is relatively good even when LiDAR sampling density is reduced to 0.40–0.50 points/m2 (50–60 % of the initial point density), as long as a suitable interpolation algorithm is used (as IDW proved to be less resilient to density reductions below approximately 0.60 points/m2). In the case of slope estimation, the pattern is relatively similar, except the difference in accuracy between IDW and the other two algorithms is even more pronounced than in the case of DTM accuracy. Based on this research, we conclude that LiDAR is an adequate method for collecting morphological data necessary for modelling the ground surface, even when the sampling density is significantly reduced.


2021 ◽  
Vol 11 (15) ◽  
pp. 6874
Author(s):  
Miroslava Vandličkova ◽  
Iveta Markova ◽  
Katarina Holla ◽  
Stanislava Gašpercová

The paper deals with the selected characteristics, such as moisture, average bulk density, and fraction size, of tropical marblewood dust (Marmaroxylon racemosum) that influence its ignition risk. Research was focused on sieve analysis, granulometric analysis, measurement of moisture level in the dust, and determination of the minimum ignition temperatures of airborne tropical dust and dust layers. Samples were prepared using a Makita 9556CR 1400W grinder and K36 sandpaper for the purpose of selecting the percentages of the various fractions (<63, 63, 71, 100, 200, 315, 500 μm). The samples were sized on an automatic vibratory sieve machine Retsch AS 200. More than 65% of the particles were determined to be under 100 μm. The focus was on microfractions of tropical wood dust (particles with a diameter of ≤100 µm) and on the impact assessment of particle size (particle size <100 µm) on the minimum ignition temperatures of airborne tropical dust and dust layers. The minimum ignition temperature of airborne marblewood dust decreased with the particle size to the level of 400 °C (particle size 63 μm).


Author(s):  
Xin Luan ◽  
Zhongli Ji ◽  
Longfei Liu ◽  
Ruifeng Wang

Rigid filters made of ceramic or metal are widely used to remove solid particles from hot gases at temperature above 260 °C in the petrochemical and coal industries. Pulse-jet cleaning of fine dust from rigid filter candles plays a critical role in the long-term operation of these filters. In this study, an experimental apparatus was fabricated to investigate the behavior of a 2050 mm filter candle, which included monitoring the variation of pressure dynamic characteristics over time and observing the release of dust layers that allowed an analysis of the cleaning performance of ISO 12103-1 test dusts with different particle size distributions. These results showed the release behavior of these dusts could be divided into five stages: radial expansion, axial crack, flaky release, irregular disruption and secondary deposition. The cleaning performance of smaller sized dust particles was less efficient as compared with larger sized dust particles under the same operating conditions primarily because large, flaky-shaped dust aggregates formed during the first three stages were easily broken into smaller, dispersed fragments during irregular disruption that forced more particles back to the filter surface during secondary deposition. Also, a “low-pressure and long-pulse width” cleaning method improved the cleaning efficiency of the A1 ultrafine test dust from 81.4% to 95.9%.


Sign in / Sign up

Export Citation Format

Share Document