Climate Change on the Northern Tibetan Plateau during 1957–2009: Spatial Patterns and Possible Mechanisms

2013 ◽  
Vol 26 (1) ◽  
pp. 85-109 ◽  
Author(s):  
Lan Cuo ◽  
Yongxin Zhang ◽  
Qingchun Wang ◽  
Leilei Zhang ◽  
Bingrong Zhou ◽  
...  

Abstract Gridded daily precipitation, temperature minima and maxima, and wind speed are generated for the northern Tibetan Plateau (NTP) for 1957–2009 using observations from 81 surface stations. Evaluation reveals reasonable quality and suitability of the gridded data for climate and hydrology analysis. The Mann–Kendall trends of various climate elements of the gridded data show that NTP has in general experienced annually increasing temperature and decreasing wind speed but spatially varied precipitation changes. The northwest (northeast) NTP became dryer (wetter), while there were insignificant changes in precipitation in the south. Snowfall has decreased along high mountain ranges during the wet and warm season. Averaged over the entire NTP, snowfall, temperature minima and maxima, and wind speed experienced statistically significant linear trends at rates of −0.52 mm yr−1 (water equivalent), +0.04°C yr−1, +0.03°C yr−1, and −0.01 m s−1 yr−1, respectively. Correlation between precipitation/wind speed and climate indices characterizing large-scale weather systems for four subregions in NTP reveals that changes in precipitation and wind speed in winter can be attributed to changes in the North Atlantic Oscillation (NAO), the Arctic Oscillation (AO), the East Asian westerly jet (WJ), and the El Niño–Southern Oscillation (ENSO) (wind speed only). In summer, the changes in precipitation and wind are only weakly related to these indices. It is speculated that in addition to the NAO, AO, ENSO, WJ, and the East and South Asian summer monsoons, local weather systems also play important roles.

2020 ◽  
Vol 33 (10) ◽  
pp. 4009-4025
Author(s):  
Shuyu Zhang ◽  
Thian Yew Gan ◽  
Andrew B. G. Bush

AbstractUnder global warming, Arctic sea ice has declined significantly in recent decades, with years of extremely low sea ice occurring more frequently. Recent studies suggest that teleconnections with large-scale climate patterns could induce the observed extreme sea ice loss. In this study, a probabilistic analysis of Arctic sea ice was conducted using quantile regression analysis with covariates, including time and climate indices. From temporal trends at quantile levels from 0.01 to 0.99, Arctic sea ice shows statistically significant decreases over all quantile levels, although of different magnitudes at different quantiles. At the representative extreme quantile levels of the 5th and 95th percentiles, the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), and the Pacific–North American pattern (PNA) have more significant influence on Arctic sea ice than El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), and the Atlantic multidecadal oscillation (AMO). Positive AO as well as positive NAO contribute to low winter sea ice, and a positive PNA contributes to low summer Arctic sea ice. If, in addition to these conditions, there is concurrently positive AMO and PDO, the sea ice decrease is amplified. Teleconnections between Arctic sea ice and the climate patterns were demonstrated through a composite analysis of the climate variables. The anomalously strong anticyclonic circulation during the years of positive AO, NAO, and PNA promotes more sea ice export through Fram Strait, resulting in excessive sea ice loss. The probabilistic analyses of the teleconnections between the Arctic sea ice and climate patterns confirm the crucial role that the climate patterns and their combinations play in overall sea ice reduction, but particularly for the low and high quantiles of sea ice concentration.


2020 ◽  
Vol 33 (7) ◽  
pp. 2793-2816 ◽  
Author(s):  
Gangfeng Zhang ◽  
Cesar Azorin-Molina ◽  
Deliang Chen ◽  
Jose A. Guijarro ◽  
Feng Kong ◽  
...  

AbstractAssessing change in daily maximum wind speed and its likely causes is crucial for many applications such as wind power generation and wind disaster risk governance. Multidecadal variability of observed near-surface daily maximum wind speed (DMWS) from 778 stations over China is analyzed for 1975–2016. A robust homogenization protocol using the R package Climatol was applied to the DMWS observations. The homogenized dataset displayed a significant (p < 0.05) declining trend of −0.038 m s−1 decade−1 for all China annually, with decreases in winter (−0.355 m s−1 decade−1, p < 0.05) and autumn (−0.108 m s−1 decade−1; p < 0.05) and increases in summer (+0.272 m s−1 decade−1, p < 0.05) along with a weak recovery in spring (+0.032 m s−1 decade−1; p > 0.10); that is, DMWS declined during the cold semester (October–March) and increased during the warm semester (April–September). Correlation analysis of the Arctic Oscillation, the Southern Oscillation, and the west Pacific modes exhibited significant correlation with DMWS variability, unveiling their complementarity in modulating DMWS. Further, we explored potential physical processes relating to the atmospheric circulation changes and their impacts on DMWS and found that 1) overall weakened horizontal airflow [large-scale mean horizontal pressure gradient (from −0.24 to +0.02 hPa decade−1) and geostrophic wind speed (from −0.6 to +0.6 m s−1 decade−1)], 2) widely decreased atmospheric vertical momentum transport [atmospheric stratification thermal instability (from −3 to +1.5 decade−1) and vertical wind shear (from −0.4 to +0.2 m s−1 decade−1)], and 3) decreased extratropical cyclones frequency (from −0.3 to 0 month decade−1) are likely causes of DMWS change.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Roxanne Ahmed ◽  
Terry Prowse ◽  
Yonas Dibike ◽  
Barrie Bonsal

Spring freshet is the dominant annual discharge event in all major Arctic draining rivers with large contributions to freshwater inflow to the Arctic Ocean. Research has shown that the total freshwater influx to the Arctic Ocean has been increasing, while at the same time, the rate of change in the Arctic climate is significantly higher than in other parts of the globe. This study assesses the large-scale atmospheric and surface climatic conditions affecting the magnitude, timing and regional variability of the spring freshets by analyzing historic daily discharges from sub-basins within the four largest Arctic-draining watersheds (Mackenzie, Ob, Lena and Yenisei). Results reveal that climatic variations closely match the observed regional trends of increasing cold-season flows and earlier freshets. Flow regulation appears to suppress the effects of climatic drivers on freshet volume but does not have a significant impact on peak freshet magnitude or timing measures. Spring freshet characteristics are also influenced by El Niño-Southern Oscillation, the Pacific Decadal Oscillation, the Arctic Oscillation and the North Atlantic Oscillation, particularly in their positive phases. The majority of significant relationships are found in unregulated stations. This study provides a key insight into the climatic drivers of observed trends in freshet characteristics, whilst clarifying the effects of regulation versus climate at the sub-basin scale.


2014 ◽  
Vol 27 (4) ◽  
pp. 1395-1412 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Lance M. Leslie

Abstract Over the past century, particularly after the 1960s, observations of mean maximum temperatures reveal an increasing trend over the southeastern quadrant of the Australian continent. Correlation analysis of seasonally averaged mean maximum temperature anomaly data for the period 1958–2012 is carried out for a representative group of 10 stations in southeast Australia (SEAUS). For the warm season (November–April) there is a positive relationship with the El Niño–Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO) and an inverse relationship with the Antarctic Oscillation (AAO) for most stations. For the cool season (May–October), most stations exhibit similar relationships with the AAO, positive correlations with the dipole mode index (DMI), and marginal inverse relationships with the Southern Oscillation index (SOI) and the PDO. However, for both seasons, the blocking index (BI, as defined by M. Pook and T. Gibson) in the Tasman Sea (160°E) clearly is the dominant climate mode affecting maximum temperature variability in SEAUS with negative correlations in the range from r = −0.30 to −0.65. These strong negative correlations arise from the usual definition of BI, which is positive when blocking high pressure systems occur over the Tasman Sea (near 45°S, 160°E), favoring the advection of modified cooler, higher-latitude maritime air over SEAUS. A point-by-point correlation with global sea surface temperatures (SSTs), principal component analysis, and wavelet power spectra support the relationships with ENSO and DMI. Notably, the analysis reveals that the maximum temperature variability of one group of stations is explained primarily by local factors (warmer near-coastal SSTs), rather than teleconnections with large-scale drivers.


2018 ◽  
Vol 22 (6) ◽  
pp. 3105-3124 ◽  
Author(s):  
Zilefac Elvis Asong ◽  
Howard Simon Wheater ◽  
Barrie Bonsal ◽  
Saman Razavi ◽  
Sopan Kurkute

Abstract. Drought is a recurring extreme climate event and among the most costly natural disasters in the world. This is particularly true over Canada, where drought is both a frequent and damaging phenomenon with impacts on regional water resources, agriculture, industry, aquatic ecosystems, and health. However, nationwide drought assessments are currently lacking and impacted by limited ground-based observations. This study provides a comprehensive analysis of historical droughts over the whole of Canada, including the role of large-scale teleconnections. Drought events are characterized by the Standardized Precipitation Evapotranspiration Index (SPEI) over various temporal scales (1, 3, 6, and 12 consecutive months, 6 months from April to September, and 12 months from October to September) applied to different gridded monthly data sets for the period 1950–2013. The Mann–Kendall test, rotated empirical orthogonal function, continuous wavelet transform, and wavelet coherence analyses are used, respectively, to investigate the trend, spatio-temporal patterns, periodicity, and teleconnectivity of drought events. Results indicate that southern (northern) parts of the country experienced significant trends towards drier (wetter) conditions although substantial variability exists. Two spatially well-defined regions with different temporal evolution of droughts were identified – the Canadian Prairies and northern central Canada. The analyses also revealed the presence of a dominant periodicity of between 8 and 32 months in the Prairie region and between 8 and 40 months in the northern central region. These cycles of low-frequency variability are found to be associated principally with the Pacific–North American (PNA) and Multivariate El Niño/Southern Oscillation Index (MEI) relative to other considered large-scale climate indices. This study is the first of its kind to identify dominant periodicities in drought variability over the whole of Canada in terms of when the drought events occur, their duration, and how often they occur.


2007 ◽  
Vol 46 (4) ◽  
pp. 445-456 ◽  
Author(s):  
Katherine Klink

Abstract Mean monthly wind speed at 70 m above ground level is investigated for 11 sites in Minnesota for the period 1995–2003. Wind speeds at these sites show significant spatial and temporal coherence, with prolonged periods of above- and below-normal values that can persist for as long as 12 months. Monthly variation in wind speed primarily is determined by the north–south pressure gradient, which captures between 22% and 47% of the variability (depending on the site). Regression on wind speed residuals (pressure gradient effects removed) shows that an additional 6%–15% of the variation can be related to the Arctic Oscillation (AO) and Niño-3.4 sea surface temperature (SST) anomalies. Wind speeds showed little correspondence with variation in the Pacific–North American (PNA) circulation index. The effect of the strong El Niño of 1997/98 on the wind speed time series was investigated by recomputing the regression equations with this period excluded. The north–south pressure gradient remains the primary determinant of mean monthly 70-m wind speeds, but with 1997/98 removed the influence of the AO increases at nearly all stations while the importance of the Niño-3.4 SSTs generally decreases. Relationships with the PNA remain small. These results suggest that long-term patterns of low-frequency wind speed (and thus wind power) variability can be estimated using large-scale circulation features as represented by large-scale climatic datasets and by climate-change models.


2013 ◽  
Vol 52 (11) ◽  
pp. 2396-2409 ◽  
Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong ◽  
Xindi Bian ◽  
Warren E. Heilman ◽  
Joseph J. Charney

AbstractThe Haines index (HI) is a fire-weather index that is widely used as an indicator of the potential for dry, low-static-stability air in the lower atmosphere to contribute to erratic fire behavior or large fire growth. This study examines the interannual variability of HI over North America and its relationship to indicators of large-scale circulation anomalies. The results show that the first three HI empirical orthogonal function modes are related respectively to El Niño–Southern Oscillation (ENSO), the Arctic Oscillation (AO), and the interdecadal sea surface temperature variation over the tropical Pacific Ocean. During the negative ENSO phase, an anomalous ridge (trough) is evident over the western (eastern) United States, with warm/dry weather and more days with high HI values in the western and southeastern United States. During the negative phase of the AO, an anomalous trough is found over the western United States, with wet/cool weather and fewer days with high HI, while an anomalous ridge occurs over the southern United States–northern Mexico, with an increase in the number of days with high HI. After the early 1990s, the subtropical high over the eastern Pacific Ocean and the Bermuda high were strengthened by a wave train that was excited over the tropical western Pacific Ocean and resulted in warm/dry conditions over the southwestern United States and western Mexico and wet weather in the southeastern United States. The above conditions are reversed during the positive phase of ENSO and AO and before the early 1990s.


2013 ◽  
Vol 33 ◽  
pp. 3-12 ◽  
Author(s):  
C. Collins ◽  
A. Mascarenhas ◽  
R. Martinez

Abstract. From 27 March to 5 April 2009, upper ocean velocities between the Galápagos Islands and Ecuador were measured using a vessel mounted ADCP. A region of possible strong cross-hemisphere exchange was observed immediately to the east of the Galápagos, where a shallow (200 m) 300 km wide northeastward surface flow transported 7–11 Sv. Underlying this strong northeastward surface current, a southward flowing undercurrent was observed which was at least 600 m thick, 100 km wide, and had an observed transport of 7–8 Sv. Next to the Ecuador coast, the shallow (< 200 m) Ecuador Coastal Current was observed to extend offshore 100 km with strongest flow, 0.33 m s−1, near the surface. Immediately to the west of the Ecuador Coastal Current, flow was directed eastward and southward into the beginnings of the Peru-Chile Countercurrent. The integral of the surface currents between the Galápagos and Ecuador agreed well with observed sea level differences. Although the correlation of the sea level differences with large scale climate indices (Niño3 and the Southern Oscillation Index) was significant, more than half of the sea level variability was not explained. Seasonal variability of the sea level difference indicated that sea level was 2 cm higher at the Galápagos during late winter and early spring, which could be associated with the pattern of northward surface flows observed by R/V Knorr.


2021 ◽  
Author(s):  
Zuonan Cao ◽  
Zhenhuan Guan ◽  
Peter Kühn ◽  
Jinsheng He ◽  
Thomas Scholten

&lt;p&gt;Many species showed that their richness and distribution shifts climate-driven towards higher elevation in Tibetan Plateau. However, vegetation and soil data from alpine grassland elevational gradients are rare (Huang et al., 2018). It is mostly unknown how the &quot;grass-line&quot; will respond to global warming and whether soils play a significant role in the vegetation pattern in high-altitude regions. At a local scale, the growth and distribution of vegetation at its upper limit may depend on nutrient limitation, as shown for treelines from the Himalayas. For example, the limited nutrient supply of soil N, K, Mg, and P becomes more intense with elevation, which declines in nutrient supply spatially coincides with abrupt changes in vegetation composition and growth parameters (Schwab et al., 2016). And low soil nutrient availability could affect tree growth in the Rolwaling Himal, Nepal treeline ecotone (Drollinger et al., 2017). To better understand the interrelationship between soil properties and grass growth at this upper limit, we took random soil samples in 3 altitudes, 3 geomorphic positions with 3 depth increments from Haibei grassland, northern Tibetan Plateau. Soil properties, like texture, bulk density, total C, N, and P fractions, were analyzed and compared to vegetation data.&lt;br&gt;Further, soil and vegetation data from open-top chambers (OTC) experiments to simulate global warming were analyzed better to understand the role of temperature for grass line-shift. The first results show that species composition change with altitude towards grassland plant communities with lower demands for P, which can be compared with the nutrient addition experiment that P addition alone significantly affects species diversity and biomass in the same area (Ren et al., 2016). We suppose that specific combinations of soil properties could limit grass growth and be even more marked than the warming, which controls biodiversity and biomass production in high mountain grassland ecosystems.&amp;#160;&lt;/p&gt;


2016 ◽  
Author(s):  
Luca Pozzoli ◽  
Srdan Dobricic ◽  
Simone Russo ◽  
Elisabetta Vignati

Abstract. Winter warming and sea ice retreat observed in the Arctic in the last decades determine changes of large scale atmospheric circulation pattern that may impact as well the transport of black carbon (BC) to the Arctic and its deposition on the sea ice, with possible feedbacks on the regional and global climate forcing. In this study we developed and applied a new statistical algorithm, based on the Maximum Likelihood Estimate approach, to determine how the changes of three large scale weather patterns (the North Atlantic Oscillation, the Scandinavian Blocking, and the El Nino-Southern Oscillation), associated with winter increasing temperatures and sea ice retreat in the Arctic, impact the transport of BC to the Arctic and its deposition. We found that the three atmospheric patterns together determine a decreasing winter deposition trend of BC between 1980 and 2015 in the Eastern Arctic while they increase BC deposition in the Western Arctic. The increasing trend is mainly due to the more frequent occurrences of stable high pressure systems (atmospheric blocking) near Scandinavia favouring the transport in the lower troposphere of BC from Europe and North Atlantic directly into to the Arctic. The North Atlantic Oscillation has a smaller impact on BC deposition in the Arctic, but determines an increasing BC atmospheric load over the entire Arctic Ocean with increasing BC concentrations in the upper troposphere. The El Nino-Southern Oscillation does not influence significantly the transport and deposition of BC to the Arctic. The results show that changes in atmospheric circulation due to polar atmospheric warming and reduced winter sea ice significantly impacted BC transport and deposition. The anthropogenic emission reductions applied in the last decades were, therefore, crucial to counterbalance the most likely trend of increasing BC pollution in the Arctic.


Sign in / Sign up

Export Citation Format

Share Document