scholarly journals Southeast Australia Autumn Rainfall Reduction: A Climate-Change-Induced Poleward Shift of Ocean–Atmosphere Circulation

2013 ◽  
Vol 26 (1) ◽  
pp. 189-205 ◽  
Author(s):  
Wenju Cai ◽  
Tim Cowan

Abstract Since the 1950s annual rainfall over southeastern Australia (SEA) has decreased considerably with a maximum decline in the austral autumn season (March–May), particularly from 1980 onward. The understanding of SEA autumn rainfall variability, the causes, and associated mechanisms for the autumn reduction remain elusive. As such, a new plausible mechanism for SEA autumn rainfall variability is described, and the dynamics for the reduction are hypothesized. First, there is no recent coherence between SEA autumn rainfall and the southern annular mode, discounting it as a possible driver of the autumn rainfall reduction. Second, weak trends in the subtropical ridge intensity cannot explain the recent autumn rainfall reduction across SEA, even though a significant relationship exists between the ridge and rainfall in April and May. With a collapse in the relationship between the autumn subtropical ridge intensity and position in recent decades, a strengthening in the influence of the postmonsoonal winds from north of Australia has emerged, as evident by a strong post-1980 coherence with SEA mean sea level pressure and rainfall. From mid to late autumn, there has been a replacement of a relative wet climate in SEA with a drier climate from northern latitudes, representing a climate shift that has contributed to the rainfall reduction. The maximum baroclinicity, as indicated by Eady growth rates, has shifted poleward. An associated poleward shift of the dominant process controlling SEA autumn rainfall has further enhanced the reduction, particularly across southern SEA. This observed change over the past few decades is consistent with a poleward shift of the ocean and atmosphere circulation.

2022 ◽  
Vol 12 (01) ◽  
pp. 113-131
Author(s):  
Aichetou Dia-Diop ◽  
Malick Wade ◽  
Sinclaire Zebaze ◽  
Abdoulaye Bouya Diop ◽  
Eric Efon ◽  
...  

2021 ◽  
Author(s):  
Aichetou Dia Diop ◽  
Malick Wade ◽  
Sinclaire Zebaze ◽  
Abdoulaye Bouya DIOP ◽  
Eric Efon ◽  
...  

Abstract This study examines the inter-annual variability of rainfall and mean Sea Level Pressure (SLP) over west Africa based on analysis of the Global Precipitation Climatology Project (GPCP) and National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis respectively. An interconnection is found in this region, between MSLP anomaly (over Azores and St. Helena High) and monthly mean precipitation during summer (June to September: JJAS). We also found that over northern Senegal (15°N-17°N; 17°W-13°W) the SLP to the north is strong; the wind converges at 200hPa corresponding to the position of the tropical Easterly jet (TEJ); the rotational wind 700hPa (corresponding to the position of the AEJ) coming from the north-east is negative. In this region, the precipitation is related to the SLP to the north with the opposite sign. The empirical orthogonal functions (EOF) of SLP are also presented, including the mean spectrum of precipitation and pressures to the north (15°N-40°N and 50°W-25°W) and south (40°S-10°S and 40°W-0°E). The dominant EOF of Sea Level Pressures north and south of the Atlantic Ocean for GPCP represents about 62.2% and 69.4% of the variance, respectively. The second and third EOFs of the pressure to the north account for 24.0% and 6.5% respectively. The second and third EOFs of the pressure to the south represent 12.5% and 8.9% respectively. Wet years in the northern of Senegal were associated with anomalous low-pressure area over north Atlantic Ocean as opposed to the dry years which exhibited an anomalous high-pressure area in the same region. On the other hand, over south Atlantic, an opposition is noted. The wavelet analysis method is applied to the SLP showings to the north, south and precipitation in our study area. The indices prove to be very consistent, especially during intervals of high variance.


The Holocene ◽  
2018 ◽  
Vol 28 (8) ◽  
pp. 1334-1344 ◽  
Author(s):  
Katerine Escobar-Torrez ◽  
Teresa Ortuño ◽  
Ilham Bentaleb ◽  
Marie-Pierre Ledru

Changes in climate conditions during the Holocene are documented in different parts of South America, showing contrasting responses to global changes. This study was conducted in the wet puna at an elevation of 4040 m a.s.l. on the eastern side of the Cordillera Real in Bolivia near Lake Titicaca. Pollen, charcoal, and stable isotopes in a sediment core collected in the peatland of Escalerani were analyzed. Results revealed environmental changes during the past 7500 yr BP, with an increase in wet climate conditions from 5900 to 4700 cal. yr BP and 3500 to 1300 cal. yr BP, and two dry periods between 4700 and 3500 cal. yr BP and 1300 to 560 cal. yr BP. Changes in hydrological conditions ranged from local changes because of glacier melting to regional changes in annual rainfall variability, related to South American monsoon activity. Moreover, our results highlight the importance of cloud convective activity from the Amazon basin along the adiabatic gradient, which maintained moist conditions at high elevations even during the mid-Holocene dry phase. The last 70 years have been characterized by the degradation of the peatland because of human activity.


2019 ◽  
Vol 32 (23) ◽  
pp. 8243-8260 ◽  
Author(s):  
Irina Rudeva ◽  
Ian Simmonds ◽  
David Crock ◽  
Ghyslaine Boschat

Abstract This study examines the relationship between midlatitude synoptic activity and variations in the width of the tropics in the Southern Hemisphere for the period 1979–2016. The edge of the tropical belt is defined here in terms of the latitude of the subtropical ridge (STR) of sea level pressure, and eddy activity in the midlatitudes is characterized by the behavior of atmospheric fronts. It is shown that the location and intensity of the STR are significantly correlated with the number of cold fronts between 20° and 40°S and that these relationships exhibit seasonal and zonal asymmetry. The link between the STR and the number of fronts is analyzed in five sectors of the Southern Hemisphere to reveal regional differences in their behavior and relationship with the southern annular mode. Some earlier studies on the widening of the tropics suggest that such changes may be caused by a shift in the location of midlatitude eddies. Our analysis explores the connection between these on a synoptic time scale. It shows that the variability of the width of the tropics is indeed strongly influenced by changes in the midlatitude synoptic activity, and that changes in synoptic activity lead those in the edge of the tropical belt by approximately one day.


2014 ◽  
Vol 18 (5) ◽  
pp. 1653-1662 ◽  
Author(s):  
X. Chen ◽  
D. Naresh ◽  
L. Upmanu ◽  
Z. Hao ◽  
L. Dong ◽  
...  

Abstract. China is facing a water resources crisis with growing concerns as to the reliable supply of water for agricultural, industrial and domestic needs. High inter-annual rainfall variability and increasing consumptive use across the country exacerbates the situation further and is a constraint on future development. For water sustainability, it is necessary to examine the differences in water demand and supply and their spatio-temporal distribution in order to quantify the dimensions of the water risk. Here, a detailed quantitative assessment of water risk as measured by the spatial distribution of cumulated deficits for China is presented. Considering daily precipitation and temperature variability over fifty years and the current water demands, risk measures are developed to inform county level water deficits that account for both within-year and across-year variations in climate. We choose political rather than watershed boundaries since economic activity and water use are organized by county and the political process is best informed through that unit. As expected, the risk measures highlight North China Plain counties as highly water stressed. Regions with high water stress have high inter-annual variability in rainfall and now have depleted groundwater aquifers. The stress components due to agricultural, industrial and domestic water demands are illustrated separately to assess the vulnerability of particular sectors within the country to provide a basis for targeted policy analysis for reducing water stress.


2011 ◽  
Vol 33 (4) ◽  
pp. 395 ◽  
Author(s):  
Fiona Walsh ◽  
Josie Douglas

Improvement in Aboriginal people’s livelihoods and economic opportunities has been a major aim of increased research and development on bush foods over the past decade. But worldwide the development of trade in non-timber forest products from natural populations has raised questions about the ecological sustainability of harvest. Trade-offs and tensions between commercialisation and cultural values have also been found. We investigated the sustainability of the small-scale commercial harvest and trade in native plant products sourced from central Australian rangelands (including Solanum centrale J.M. Black, Acacia Mill. spp.). We used semi-structured interviews with traders and Aboriginal harvesters, participant observation of trading and harvesting trips, and analysis of species and trader records. An expert Aboriginal reference group guided the project. We found no evidence of either taxa being vulnerable to over-harvest. S. centrale production is enhanced by harvesting when it co-occurs with patch-burning. Extreme fluctuations in productivity of both taxa, due to inter-annual rainfall variability, have a much greater impact on supply than harvest effects. Landscape-scale degradation (including cattle grazing and wildfire) affected ecological sustainability according to participants. By contrast, we found that sustainability of bush food trade is more strongly impacted by social and economic factors. The relationship-based links between harvesters and traders are critical to monetary trade. Harvesters and traders identified access to productive lands and narrow economic margins between costs and returns as issues for the future sustainability of harvest and trade. Harvesters and the reference group emphasised that sustaining bush harvest relies on future generations having necessary knowledge and skills; these are extremely vulnerable to loss. Aboriginal people derive multiple livelihood benefits from harvest and trade. Aboriginal custodians and harvester groups involved in recent trade are more likely to benefit from research and development investment to inter-generational knowledge and skill transfer than from investments in plant breeding and commercial horticultural development. In an inductive comparison, our study found there to be strong alignment between key findings about the strategies used by harvesters and traders in bush produce and the ‘desert system’..


Author(s):  
Hudson Ellen Alencar Menezes ◽  
Raimundo Mainar de Medeiros ◽  
José Lucas Guilherme Santos

<p>As variações nas precipitações refletem claramente a dinâmica atmosférica da região, marcada pela intensa variabilidade, onde se observa a atuação da Zona de Convergência Intertropical (ZCIT) com sua atuação entre os meses de janeiro a março, sendo esse período mais chuvoso. As variabilidades espaço temporal no comportamento das chuvas tem sido analisadas e diagnosticadas por vários autores no Nordeste do Brasil (NEB), portanto objetivou-se diagnosticar a variabilidade dos índices pluviométricos em Teresina no Estado do Piauí no período de 1913 a 2010. A análise do comportamento da precipitação nas cidades de grande e médio porte é de extrema importância para o gerenciamento dos recursos hídricos, uma vez que se trata de áreas densamente urbanizadas. Muitas vezes, sem uma estruturação urbana adequada, estas cidades se encaixam perfeitamente nesse contexto. Foram utilizados dados mensais observados e anuais de precipitação pluviométrica no período de 1913 a 2010, com 97 anos de observações. Os resultados mostraram a recorrência de valores máximos de precipitação anual dentro de um intervalo de 18, 11 e 8 anos. Na análise dos desvios-padrões, os resultados mostraram predominância dos desvios negativos em relação aos desvios positivos.</p><p align="center"><strong><em>Climatology of rainfall in the Teresina city, Piauí state, Brazil</em></strong></p><p>Variations in precipitation clearly reflect the atmospheric dynamics of the region, marked by intense variability, where we observe the performance of the Intertropical Convergence Zone (ITCZ) with his performance in the months of January-March, this being more rain tem period. The timeline of rainfall variability in behavior has been analyzed and diagnosed by several authors in Northeast Brazil (NEB), so let's study this variability between the periods 1913 to 2010 of Teresina city.  The behavior of rainfall in cities large and medium sized is of utmost importance to the managerial of water resources, since it is densely urbanized areas. Often without adequate urban structures these cities fit perfectly in this context. We used observed monthly and annual rainfall data for the period 1913-2010, 97 years of observations. The results showed recurrence of maximum values of annual precipitation an interval of 18, 11 and 8 years. In the analysis of standard deviations, the results showed a predominance of negative deviations from the positive deviations.<strong></strong></p><p align="center"><strong><em><br /></em></strong></p>


2021 ◽  
Vol 893 (1) ◽  
pp. 012006
Author(s):  
F Aditya ◽  
E Gusmayanti ◽  
J Sudrajat

Abstract Climate change has been a prominent issue in the last decade. Climate change on a global scale does not necessarily have the same effect in different regions. Rainfall is a crucial weather element related to climate change. Rainfall trends analysis is an appropriate step in assessing the impact of climate change on water availability and food security. This study examines rainfall variations and changes at West Kalimantan, focusing on Mempawah and Kubu Raya from 2000-2019. The Mann-Kendall (MK) and Sen's Slope estimator test, which can determine rainfall variability and long-term monotonic trends, were utilized to analyze 12 rainfall stations. The findings revealed that the annual rainfall pattern prevailed in all locations. Mempawah region tends to experience a downward trend, while Kubu Raya had an upward trend. However, a significant trend (at 95% confidence level) was identified in Sungai Kunyit with a slope value of -33.20 mm/year. This trend indicates that Sungai Kunyit will become drier in the future. The results of monthly rainfall analysis showed that significant upward and downward trends were detected in eight locations. Rainfall trends indicate that climate change has occurred in this region.


2020 ◽  
Author(s):  
Getachew Bayable Tiruneh ◽  
Gedamu Amare ◽  
Getnet Alemu ◽  
Temesgen Gashaw

Abstract Background: Rainfall variability is a common characteristic in Ethiopia and it exceedingly affects agriculture particularly in the eastern parts of the country where rainfall is relatively scarce. Hence, understanding the spatio-temporal variability of rainfall is indispensable for planning mitigation measures during high and low rainfall seasons. This study examined the spatio-temporal variability and trends of rainfall in the West Harerge Zone, eastern Ethiopia.Method: The coefficient of variation (CV) and standardized anomaly index (SAI) was employed to analyze rainfall variability while Mann-Kendall (MK) trend test and Sen’s slop estimator were employed to examine the trend and magnitude of the rainfall changes, respectively. The association between rainfall and Pacific Ocean Sea Surface Temperature (SST) was also evaluated by the Pearson correlation coefficient (r).Results: The annual rainfall CV ranges from 12-19.36% while the seasonal rainfall CV extends from 15-28.49%, 24-35.58%, and 38-75.9% for average Kiremt (June-September), Belg (February-May), and Bega (October-January) seasons, respectively (1983-2019). On the monthly basis, the trends of rainfall decreased in all months except in July, October, and November. However, the trends of rainfall were not statistically significant (α = 0.05), unlike November. The annual rainfall trends showed a non-significant decreasing trend. On a seasonal basis, the trend of mean Kiremt and Belg seasons rainfall was decreased. But, it increased in Bega season although it was not statistically significant. Moreover, the correlation between rainfall and Pacific Ocean SST was negative for Kiremt while positive for Belg and Bega seasons. Besides, the correlation between rainfall and Pacific Ocean SST was negative at annual time scales.Conclusions: High spatial and temporal rainfall variability on monthly, seasonal, and annual time scales was observed in the study area. Seasonal rainfall has high inter-annual variability in the dry season (Bega) than other seasons. The trends in rainfall were decreased in most of the months. Besides, the trend of rainfall was increased annually and in the Bega season rather than other seasons. Generally, the occurrence of droughts in the study area was associated with ENSO events like most other parts of Ethiopia and East Africa.


2021 ◽  
pp. 232102222110514
Author(s):  
Kolawole Ogundari ◽  
Adebola Abimbola Ademuwagun ◽  
Ogechukwu Appah

The climatic change crisis has led to a renewed interest in understanding the dynamic of climatic variability over time. This is because rainfall variability in response to climate change poses a severe threat to global food security and agricultural production in general. As a result of this, the study investigates the convergence of rainfall variability in Nigeria. We use historical climate data on annual rainfall collected from meteorological stations across 12 states and covering 1992–2013. This gives rise to a balanced panel data of 12 states and 20 periods, which yields 240 observations. The study used a sigma convergence hypothesis test estimated using ordinary least square, fixed-effect and feasible generalized least square models. The coefficient of variation is taken as a measure of rainfall variability in the study. The results showed a negative (declining) linear correlation between rainfall’s coefficient of variation and data year. This means that rainfall variability decreased over time. This indicates evidence of convergence of rainfall, which means states with lower average annual rainfall are catching up on states with higher average annual rainfall over time. And, from the agricultural production standpoint, this result shows that the potential threat of rainfall variability to food security is not severe. In addition, it indicates a decrease in risk and uncertainty in food crop production associated with rainfall variability. JEL Classifications: O13, O55, Q10, Q54


Sign in / Sign up

Export Citation Format

Share Document