scholarly journals China's water sustainability in the 21st century: a climate-informed water risk assessment covering multi-sector water demands

2014 ◽  
Vol 18 (5) ◽  
pp. 1653-1662 ◽  
Author(s):  
X. Chen ◽  
D. Naresh ◽  
L. Upmanu ◽  
Z. Hao ◽  
L. Dong ◽  
...  

Abstract. China is facing a water resources crisis with growing concerns as to the reliable supply of water for agricultural, industrial and domestic needs. High inter-annual rainfall variability and increasing consumptive use across the country exacerbates the situation further and is a constraint on future development. For water sustainability, it is necessary to examine the differences in water demand and supply and their spatio-temporal distribution in order to quantify the dimensions of the water risk. Here, a detailed quantitative assessment of water risk as measured by the spatial distribution of cumulated deficits for China is presented. Considering daily precipitation and temperature variability over fifty years and the current water demands, risk measures are developed to inform county level water deficits that account for both within-year and across-year variations in climate. We choose political rather than watershed boundaries since economic activity and water use are organized by county and the political process is best informed through that unit. As expected, the risk measures highlight North China Plain counties as highly water stressed. Regions with high water stress have high inter-annual variability in rainfall and now have depleted groundwater aquifers. The stress components due to agricultural, industrial and domestic water demands are illustrated separately to assess the vulnerability of particular sectors within the country to provide a basis for targeted policy analysis for reducing water stress.

2013 ◽  
Vol 10 (8) ◽  
pp. 11129-11150 ◽  
Author(s):  
X. Chen ◽  
N. Devineni ◽  
U. Lall ◽  
Z. Hao ◽  
L. Dong ◽  
...  

Abstract. China is facing a water resources crisis with growing concerns as to the reliable supply of water for agricultural, industrial and domestic needs. High inter-annual rainfall variability and increasing consumptive use across the country exacerbates the situation further and is a constraint on future development. For water sustainability, it is necessary to examine the differences in water demand and supply and their spatio-temporal distribution in order to quantify the dimensions of the water risk. Here, a detailed quantitative assessment of water risk as measured by the distribution of cumulated deficits for China is presented. Considering daily precipitation and temperature variability over fifty years and the current water demands, risk measures are developed to inform county level water deficits that account for both within year and across year variations in climate. We choose political rather than watershed boundaries since economic activity and water use are organized by county and the political process is best informed through that unit. The risk measures highlight North China Plain counties as highly water stressed. Regions with high water stress are typically the regions with high inter-annual variability in rainfall and now have depleted groundwater aquifers. The stress components due to agricultural, industrial and domestic water demands are illustrated separately to assess the vulnerability of particular sectors within the country to provide a basis for targeted policy analysis for reducing water stress.


Author(s):  
L. C. Tavares ◽  
J. M. Bravo ◽  
R. Tassi ◽  
I. R. Almeida ◽  
D. Wartchow

Abstract The implementation of rainwater harvesting (RWH) systems depends on technical and socioeconomic assessments. However, most studies do not consider socioeconomic aspects, which could lead to different degrees of RWH implementation and technology selection due to economic constraints and local regulations. We evaluated the socioeconomic potential for RWH as an alternative for water supply of 24 Southern Brazilian municipalities with less than 50,000 inhabitants. A total of 10,080 RWH configurations were assessed and a reliability analysis was carried out to define the RWH system configurations potentially implementable (RWH+) in each municipality. RWH economic benefits were estimated from a social point of view, based on the reduction of the monthly water payment. Overall, RWH+ supplying higher demands with higher economics savings were feasible, as expected. However, several municipalities that showed RWH+ supplying 100% of the domestic water demands obtained lower economic savings, due to low water tariff and water consumption. Still, a set of municipalities presented RWH+ for rainwater demand replacing 50% to 60% of the residential demand, for which the high-water tariffs reflected in higher economics savings. The advantages of using the RWH systems outstand even more when the investments at Federal and Local levels are considered.


2020 ◽  
Author(s):  
Fabian Stenzel ◽  
Dieter Gerten ◽  
Naota Hanasaki

Abstract. Many scenarios of future climate evolution and its anthropogenic drivers include considerable amounts of bioenergy as fuel source, negative emission technology, or for final energy production. The associated freshwater requirements for irrigation of dedicated biomass plantations might be substantial and therefore potentially increase water limitation and stress in affected regions; however, assumptions and quantities of water use provided in the literature vary strongly. This paper reviews existing global assessments of freshwater requirements for such bioenergy production and puts these estimates into the context of scenarios for other water use sectors. We scanned the available literature and (out of 430 initial hits) found 16 publications (partly including several scenarios) with reported values on global water demand for irrigation of biomass plantations, suggesting a range of 125–11,350 km3 yr−1 water use (consumption), compared to about 1,100–11,600 km3 yr−1 for other (agricultural, industrial, and domestic) water withdrawals. To provide an understanding of the origins of this large range, we present the diverse underlying assumptions, discuss major study differences, and make the freshwater amounts involved comparable by estimating the original biomass harvests from reported final energy or negative emissions. We conclude that due to the potentially high water demands and the trade-offs that might go along with them, bioenergy should be an integral part of global assessments of freshwater demand and use. For interpreting and comparing reported estimates of possible future bioenergy water demands, full disclosure of parameters and assumptions is crucial. A minimum set should include annual blue water consumption and withdrawal, bioenergy crop species, rainfed as well as irrigated bioenergy plantation locations (including total area), and total bioenergy harvest amounts.


Author(s):  
Raimundo Mainar Medeiros ◽  
Virgínia Mirtes de Alcântara Silva ◽  
Valneli da Silva Melo ◽  
Hudson Ellen Alencar Menezes ◽  
Hamstrong Ellen Alencar Menezes

<p>Com o objetivo de<strong> </strong>analisar a distribuição temporal e a tendência da precipitação pluvial para o município de Bom Jesus - PI relacionando o estudo com regressão linear e medidas de tendência central e de dispersão dos índices pluviométricos mensais e anuais, a estação chuvosa dura seis meses (novembro a abril) com valor médio do período de 875,1 mm, correspondendo a 88,86% da precipitação anual. Em 55 anos de precipitação observada sua média histórica é de 984,8 mm. Conforme a análise de regressão linear da série histórica de precipitação do período de 1960 a 2014, a tendência de maior variabilidade da precipitação centra-se entre os meses de novembro a abril, e os menores índices pluviométricos centra-se entre os meses de maio a setembro, que possui baixos índices pluviométricos.</p><p align="center"><strong><em>Diagnosis and trend rainfall in Bom Jesus - Piauí, Brazil</em></strong><strong><em></em></strong></p><p><strong>Abstract</strong><strong>: </strong>With the objective of analyse the temporal distribution and trend of rainfall for the city of Bom Jesus - PI related study with linear regression and measures of central tendency and dispersion of the monthly and annual rainfall, the six-month rainy season (November to April) with an average value of875.1 mm period, corresponding to 88.86% of the annual precipitation. In 55 years of rainfall observed its historical average is984.8 mm. As will analysis Linear regression of the time series period of rainfall 1960-2014, the trend of increased rainfall variability focuses during the months from November to April, and the lowest rainfall is centered between the months of May to September, that It has low rainfall.</p>


2018 ◽  
Vol 17 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Shakhawat Chowdhury

Abstract Desalinated seawater is the major source of drinking water in many countries. During desalination, several activities including pretreatment, desalination, stabilization, mixing, storage and distribution are performed. Few disinfectants are used during these activities to control the biofouling agents and microbiological regrowth. The reactions between the disinfectants and natural organic matter (NOM), bromide and iodide form disinfection by-products (DBPs) in product water. The product water is stabilized and mixed with treated freshwater (e.g., groundwater) to meet the domestic water demands. The DBPs in desalinated and blend water are an issue due to their possible cancer and non-cancer risks to humans. In this paper, formation and distribution of DBPs in different steps of desalination and water distribution systems prior to reaching the consumer tap were reviewed. The variability of DBPs among different sources and desalination processes was explained. The toxicities of DBPs were compared and the strategies to control DBPs in desalinated water were proposed. Several research directions were identified to achieve comprehensive control on DBPs in desalinated water, which are likely to protect humans from the adverse consequences of DBPs.


2018 ◽  
Vol 18 (2) ◽  
Author(s):  
Lorhaine Santos-Silva ◽  
Tamaris Gimenez Pinheiro ◽  
Amazonas Chagas-Jr ◽  
Marinêz Isaac Marques ◽  
Leandro Dênis Battirola

Abstract: Myriapods constitute important edaphic macrofauna taxa which dwell in different trophic levels and influence the dynamics of these environments. This study evaluated the variation in composition, richness and abundance of edaphic myriapod assemblages as a function of the distribution and structure of flooded and non-flooded habitats (spatial variation) and hydrological seasonality (temporal variation) in a floodplain of the northern Pantanal region of Mato Grosso, Brazil. Sampling was carried out in three areas of the Poconé Pantanal, along an altitudinal and inundation gradient consisting of inundated and non-inundated habitats and different vegetation formations. Three quadrats (10 x 10 m) were delimited within each habitat type, where sampling was performed using pitfall traps and mini-Winkler extractors during the dry, rising water, high water and receding water periods of two hydrological cycles within the Pantanal (2010/2011 and 2011/2012). A total of 549 millipedes were collected, consisting of 407 Diplopoda and 142 Chilopoda distributed in six orders, 12 families and 20 species. The assemblages composition varied throughout the seasonal periods, indicating that the rising water and dry periods differed from the high water and receding water periods. In addition to the variation between seasonal periods, myriapod richness and abundance also varied in relation to areas consisting of different vegetation formations. Thus, it can be concluded that the hydrological seasonality associated with the inundation gradient and different vegetation types were determinant in the heterogeneous spatial and temporal distribution of myriapod assemblages, validating that the conservation of these invertebrates in the Pantanal is directly linked to the preservation of vegetation, and consequently, ecosystem integrity.


2016 ◽  
Vol 02 (04) ◽  
pp. 1650023 ◽  
Author(s):  
Noémie Neverre ◽  
Patrice Dumas

This paper presents a methodology to project irrigation and domestic water demands on a regional to global scale, in terms of both quantity and economic value. Projections are distributed at the water basin scale. Irrigation water demand is projected under climate change. It is simply computed as the difference between crop potential evapotranspiration for the different stages of the growing season and available precipitation. Irrigation water economic value is based on a yield comparison approach between rainfed and irrigated crops using average yields. For the domestic sector, we project the combined effects of demographic growth, economic development and water cost evolution on future demands. The method consists in building three-part inverse demand functions in which volume limits of the blocks evolve with the level of GDP per capita. The value of water along the demand curve is determined from price-elasticity, price and demand data from the literature, using the point-expansion method, and from water cost data. This generic methodology can be easily applied to large-scale regions, in particular developing regions where reliable data are scarce. As an illustration, it is applied to Algeria, at the 2050 horizon, for demands associated to reservoirs. Our results show that domestic demand is projected to become a major water consumption sector. The methodology is meant to be integrated into large-scale hydroeconomic models, to determine inter-sectorial and inter-temporal water allocation based on economic valuation.


2011 ◽  
Vol 33 (4) ◽  
pp. 395 ◽  
Author(s):  
Fiona Walsh ◽  
Josie Douglas

Improvement in Aboriginal people’s livelihoods and economic opportunities has been a major aim of increased research and development on bush foods over the past decade. But worldwide the development of trade in non-timber forest products from natural populations has raised questions about the ecological sustainability of harvest. Trade-offs and tensions between commercialisation and cultural values have also been found. We investigated the sustainability of the small-scale commercial harvest and trade in native plant products sourced from central Australian rangelands (including Solanum centrale J.M. Black, Acacia Mill. spp.). We used semi-structured interviews with traders and Aboriginal harvesters, participant observation of trading and harvesting trips, and analysis of species and trader records. An expert Aboriginal reference group guided the project. We found no evidence of either taxa being vulnerable to over-harvest. S. centrale production is enhanced by harvesting when it co-occurs with patch-burning. Extreme fluctuations in productivity of both taxa, due to inter-annual rainfall variability, have a much greater impact on supply than harvest effects. Landscape-scale degradation (including cattle grazing and wildfire) affected ecological sustainability according to participants. By contrast, we found that sustainability of bush food trade is more strongly impacted by social and economic factors. The relationship-based links between harvesters and traders are critical to monetary trade. Harvesters and traders identified access to productive lands and narrow economic margins between costs and returns as issues for the future sustainability of harvest and trade. Harvesters and the reference group emphasised that sustaining bush harvest relies on future generations having necessary knowledge and skills; these are extremely vulnerable to loss. Aboriginal people derive multiple livelihood benefits from harvest and trade. Aboriginal custodians and harvester groups involved in recent trade are more likely to benefit from research and development investment to inter-generational knowledge and skill transfer than from investments in plant breeding and commercial horticultural development. In an inductive comparison, our study found there to be strong alignment between key findings about the strategies used by harvesters and traders in bush produce and the ‘desert system’..


Author(s):  
Hudson Ellen Alencar Menezes ◽  
Raimundo Mainar de Medeiros ◽  
José Lucas Guilherme Santos

<p>As variações nas precipitações refletem claramente a dinâmica atmosférica da região, marcada pela intensa variabilidade, onde se observa a atuação da Zona de Convergência Intertropical (ZCIT) com sua atuação entre os meses de janeiro a março, sendo esse período mais chuvoso. As variabilidades espaço temporal no comportamento das chuvas tem sido analisadas e diagnosticadas por vários autores no Nordeste do Brasil (NEB), portanto objetivou-se diagnosticar a variabilidade dos índices pluviométricos em Teresina no Estado do Piauí no período de 1913 a 2010. A análise do comportamento da precipitação nas cidades de grande e médio porte é de extrema importância para o gerenciamento dos recursos hídricos, uma vez que se trata de áreas densamente urbanizadas. Muitas vezes, sem uma estruturação urbana adequada, estas cidades se encaixam perfeitamente nesse contexto. Foram utilizados dados mensais observados e anuais de precipitação pluviométrica no período de 1913 a 2010, com 97 anos de observações. Os resultados mostraram a recorrência de valores máximos de precipitação anual dentro de um intervalo de 18, 11 e 8 anos. Na análise dos desvios-padrões, os resultados mostraram predominância dos desvios negativos em relação aos desvios positivos.</p><p align="center"><strong><em>Climatology of rainfall in the Teresina city, Piauí state, Brazil</em></strong></p><p>Variations in precipitation clearly reflect the atmospheric dynamics of the region, marked by intense variability, where we observe the performance of the Intertropical Convergence Zone (ITCZ) with his performance in the months of January-March, this being more rain tem period. The timeline of rainfall variability in behavior has been analyzed and diagnosed by several authors in Northeast Brazil (NEB), so let's study this variability between the periods 1913 to 2010 of Teresina city.  The behavior of rainfall in cities large and medium sized is of utmost importance to the managerial of water resources, since it is densely urbanized areas. Often without adequate urban structures these cities fit perfectly in this context. We used observed monthly and annual rainfall data for the period 1913-2010, 97 years of observations. The results showed recurrence of maximum values of annual precipitation an interval of 18, 11 and 8 years. In the analysis of standard deviations, the results showed a predominance of negative deviations from the positive deviations.<strong></strong></p><p align="center"><strong><em><br /></em></strong></p>


2021 ◽  
Vol 893 (1) ◽  
pp. 012006
Author(s):  
F Aditya ◽  
E Gusmayanti ◽  
J Sudrajat

Abstract Climate change has been a prominent issue in the last decade. Climate change on a global scale does not necessarily have the same effect in different regions. Rainfall is a crucial weather element related to climate change. Rainfall trends analysis is an appropriate step in assessing the impact of climate change on water availability and food security. This study examines rainfall variations and changes at West Kalimantan, focusing on Mempawah and Kubu Raya from 2000-2019. The Mann-Kendall (MK) and Sen's Slope estimator test, which can determine rainfall variability and long-term monotonic trends, were utilized to analyze 12 rainfall stations. The findings revealed that the annual rainfall pattern prevailed in all locations. Mempawah region tends to experience a downward trend, while Kubu Raya had an upward trend. However, a significant trend (at 95% confidence level) was identified in Sungai Kunyit with a slope value of -33.20 mm/year. This trend indicates that Sungai Kunyit will become drier in the future. The results of monthly rainfall analysis showed that significant upward and downward trends were detected in eight locations. Rainfall trends indicate that climate change has occurred in this region.


Sign in / Sign up

Export Citation Format

Share Document